Unknown

Dataset Information

0

Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries.


ABSTRACT: Lithium metal batteries are among the strong contenders to meet the increasing energy demands of the modern world. Metallic lithium (Li) is light in weight, possesses very low standard negative electrochemical potential and offers an enhanced theoretical capacity (3860?mA?h g-1). As a negative electrode Li paves way to explore variety of elements including oxygen, sulfur and various other complex oxides as potential positive electrodes with a promise of much higher energy densities than that of conventional positive electrodes. However, there are technical challenges in utilizing metallic lithium due to its higher reactivity towards liquid electrolytes and higher affinity to form Li dendrites, leading to serious safety concerns. Here, we report on preparation of niobium (Nb) metal-coated binder-free and highly hydrophilic polypropylene separator prepared via radio frequency (RF) magnetron sputtering. Thin layer of niobium metal (Nb) particles were deposited onto the polypropylene (PP) sheet for various time periods to achieve desired coating thickness. The as-prepared separator revealed excellent hydrophilic behaviour due to enhanced surface wettability. Symmetric cells display reduced interface resistance and uniform voltage profiles for 1000 cycles with reduced polarization at higher current densities suggesting smooth stripping and plating of Li and homogeneous current distribution at electrode/electrolyte interface under room temperature conditions. Nb nanolayer protected separator with LiNi0.33M0.33Co0.33O2 (LNMC) and composite sulfur cathodes revealed an enhanced cycling stability.

SUBMITTER: Din MMU 

PROVIDER: S-EPMC6856152 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries.

Din Mir Mehraj Ud MMU   Murugan Ramaswamy R  

Scientific reports 20191114 1


Lithium metal batteries are among the strong contenders to meet the increasing energy demands of the modern world. Metallic lithium (Li) is light in weight, possesses very low standard negative electrochemical potential and offers an enhanced theoretical capacity (3860 mA h g<sup>-1</sup>). As a negative electrode Li paves way to explore variety of elements including oxygen, sulfur and various other complex oxides as potential positive electrodes with a promise of much higher energy densities th  ...[more]

Similar Datasets

| S-EPMC6648104 | biostudies-literature
| S-EPMC7600698 | biostudies-literature
| S-EPMC5054863 | biostudies-literature
| S-EPMC9069191 | biostudies-literature
| S-EPMC6523575 | biostudies-literature
| S-EPMC7820226 | biostudies-literature
| S-EPMC5923521 | biostudies-literature
| S-EPMC9579144 | biostudies-literature
| S-EPMC5984539 | biostudies-literature
| S-EPMC8746311 | biostudies-literature