Unknown

Dataset Information

0

Optimization of Mature Embryo-Based Tissue Culture and Agrobacterium-Mediated Transformation in Model Grass Brachypodium distachyon.


ABSTRACT: Agrobacterium-mediated genetic transformation is well established in the model grass Brachypodium distachyon. However, most protocols employ immature embryos because of their better regenerative capacity. A major problem associated with the immature embryo system is that they are available only during a limited time window of growing plants. In this study, we have developed an optimized Agrobacterium-mediated genetic transformation protocol that utilizes mature embryos. We have adopted seed shearing and photoautotrophic rooting (PR) in callus induction and root regeneration, respectively, with evident significant improvement in these aspects. We have also revealed that the newly developed chemical inducer Fipexide (FPX) had the ability to induce callus, shoots, and roots. By comparison, we have demonstrated that FPX shows higher efficiency in shoot generation than other frequently used chemicals in our mature embryo-based system. In addition, we demonstrated that the age of embryogenetic callus severely affects the transformation efficiency (TE), with the seven-week-old embryogenetic callus having the highest TE reaching 52.6%, which is comparable with that in immature embryo transformation. The new methodologies reported here will advance the development and utilization of Brachypodium as a new model system for grass genomics.

SUBMITTER: Yu G 

PROVIDER: S-EPMC6862288 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimization of Mature Embryo-Based Tissue Culture and <i>Agrobacterium</i>-Mediated Transformation in Model Grass <i>Brachypodium distachyon</i>.

Yu Guangrun G   Wang Jianyong J   Miao Li L   Xi Mengli M   Wang Qiongli Q   Wang Kai K  

International journal of molecular sciences 20191031 21


<i>Agrobacterium</i>-mediated genetic transformation is well established in the model grass <i>Brachypodium distachyon</i>. However, most protocols employ immature embryos because of their better regenerative capacity. A major problem associated with the immature embryo system is that they are available only during a limited time window of growing plants. In this study, we have developed an optimized <i>Agrobacterium</i>-mediated genetic transformation protocol that utilizes mature embryos. We h  ...[more]

Similar Datasets

| S-EPMC4877385 | biostudies-literature
2010-02-15 | GSE20195 | GEO
| S-EPMC6032170 | biostudies-literature
| S-EPMC3268539 | biostudies-literature
| S-EPMC5877586 | biostudies-literature
| S-EPMC5472904 | biostudies-other
| S-EPMC5678151 | biostudies-other
| S-EPMC3003816 | biostudies-other
| S-EPMC3597984 | biostudies-literature
| S-EPMC7497039 | biostudies-literature