Ontology highlight
ABSTRACT: Importance
Automatic curation of consumer-generated, opioid-related social media big data may enable real-time monitoring of the opioid epidemic in the United States.Objective
To develop and validate an automatic text-processing pipeline for geospatial and temporal analysis of opioid-mentioning social media chatter.Design, setting, and participants
This cross-sectional, population-based study was conducted from December 1, 2017, to August 31, 2019, and used more than 3 years of publicly available social media posts on Twitter, dated from January 1, 2012, to October 31, 2015, that were geolocated in Pennsylvania. Opioid-mentioning tweets were extracted using prescription and illicit opioid names, including street names and misspellings. Social media posts (tweets) (n?=?9006) were manually categorized into 4 classes, and training and evaluation of several machine learning algorithms were performed. Temporal and geospatial patterns were analyzed with the best-performing classifier on unlabeled data.Main outcomes and measures
Pearson and Spearman correlations of county- and substate-level abuse-indicating tweet rates with opioid overdose death rates from the Centers for Disease Control and Prevention WONDER database and with 4 metrics from the National Survey on Drug Use and Health for 3 years were calculated. Classifier performances were measured through microaveraged F1 scores (harmonic mean of precision and recall) or accuracies and 95% CIs.Results
A total of 9006 social media posts were annotated, of which 1748 (19.4%) were related to abuse, 2001 (22.2%) were related to information, 4830 (53.6%) were unrelated, and 427 (4.7%) were not in the English language. Yearly rates of abuse-indicating social media post showed statistically significant correlation with county-level opioid-related overdose death rates (n?=?75) for 3 years (Pearson r?=?0.451, P?Conclusions and relevanceThe correlations obtained in this study suggest that a social media-based approach reliant on supervised machine learning may be suitable for geolocation-centric monitoring of the US opioid epidemic in near real time.
SUBMITTER: Sarker A
PROVIDER: S-EPMC6865282 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
Sarker Abeed A Gonzalez-Hernandez Graciela G Ruan Yucheng Y Perrone Jeanmarie J
JAMA network open 20191101 11
<h4>Importance</h4>Automatic curation of consumer-generated, opioid-related social media big data may enable real-time monitoring of the opioid epidemic in the United States.<h4>Objective</h4>To develop and validate an automatic text-processing pipeline for geospatial and temporal analysis of opioid-mentioning social media chatter.<h4>Design, setting, and participants</h4>This cross-sectional, population-based study was conducted from December 1, 2017, to August 31, 2019, and used more than 3 ye ...[more]