Anticipatory alpha oscillation predicts attentional selection and hemodynamic response.
Ontology highlight
ABSTRACT: In covert visual attention, one fundamental question is how advance knowledge facilitates subsequent neural processing and behavioral performance. In this study, with a rapid event-related simultaneous electroencephalography (EEG) and functional near infrared spectroscopy recording in humans, we explored the potential contribution of anticipatory electrophysiological activation and hemodynamic activation by examining how anticipatory low-frequency oscillations and changes in oxygenated hemoglobin (HbO) concentration influence the subsequent event-related potential (ERP) marker of attentional selection. We found that expecting a target led to both a posterior lateralization of alpha-band (8-12?Hz) oscillation power and a lateralization of HbO response over the visual cortex. Importantly, the magnitude of cue-induced alpha lateralization was positively correlated with the nearby HbO lateralization in the visual cortex, and such a cue-induced alpha lateralization predicted the subsequent target-evoked N2pc amplitudes assumed to reflect attentional selection. Our results suggest that each individual's attentional selection biomarker as reflected by N2pc is predictable in advance via the anticipation-induced alpha lateralization, and such cue-induced alpha lateralization seems to play an important role in the functional coupling effects between the low-frequency EEG and the nearby hemodynamic activation.
SUBMITTER: Zhao C
PROVIDER: S-EPMC6865416 | biostudies-literature | 2019 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA