Predicting hemispheric dominance for language production in healthy individuals using support vector machine.
Ontology highlight
ABSTRACT: We used a Support Vector Machine (SVM) classifier to assess hemispheric pattern of language dominance of 47 individuals categorized as non-typical for language from their hemispheric functional laterality index (HFLI) measured on a sentence minus word-list production fMRI-BOLD contrast map. The SVM classifier was trained at discriminating between Dominant and Non-Dominant hemispheric language production activation pattern on a group of 250 participants previously identified as Typicals (HFLI strongly leftward). Then, SVM was applied to each hemispheric language activation pattern of 47 non-typical individuals. The results showed that at least one hemisphere (left or right) was found to be Dominant in every, except 3 individuals, indicating that the "dominant" type of functional organization is the most frequent in non-typicals. Specifically, left hemisphere dominance was predicted in all non-typical right-handers (RH) and in 57.4% of non-typical left-handers (LH). When both hemisphere classifications were jointly considered, four types of brain patterns were observed. The most often predicted pattern (51%) was left-dominant (Dominant left-hemisphere and Non-Dominant right-hemisphere), followed by right-dominant (23%, Dominant right-hemisphere and Non-Dominant left-hemisphere) and co-dominant (19%, 2 Dominant hemispheres) patterns. Co-non-dominant was rare (6%, 2 Non-Dominant hemispheres), but was normal variants of hemispheric specialization. In RH, only left-dominant (72%) and co-dominant patterns were detected, while for LH, all types were found, although with different occurrences. Among the 10 LH with a strong rightward HFLI, 8 had a right-dominant brain pattern. Whole-brain analysis of the right-dominant pattern group confirmed that it exhibited a functional organization strictly mirroring that of left-dominant pattern group. Hum Brain Mapp 38:5871-5889, 2017. © 2017 Wiley Periodicals, Inc.
SUBMITTER: Zago L
PROVIDER: S-EPMC6867031 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA