ABSTRACT: We investigated a controversy regarding the role of the dorsal striatum (DS) in deliberate decision-making versus late-stage, stimulus-response learning to the point of automatization. Participants learned to associate abstract images with right or left button presses explicitly before strengthening these associations through stimulus-response trials with (i.e., Session 1) and without (i.e., Session 2) feedback. In Session 1, trials were divided into response-selection and feedback events to separately assess decision versus learning processes. Session 3 evaluated stimulus-response automaticity using a location Stroop task. DS activity correlated with response-selection and not feedback events in Phase 1 (i.e., Blocks 1-3), Session 1. Longer response times (RTs), lower accuracy, and greater intertrial variability characterized Phase 1, suggesting deliberation. DS activity extinguished in Phase 2 (i.e., Blocks 4-12), Session 1, once RTs, response variability, and accuracy stabilized, though stimulus-response automatization continued. This was signaled by persisting improvements in RT and accuracy into Session 2. Distraction between Sessions 1 and 2 briefly reintroduced response uncertainty, and correspondingly, significant DS activity reappeared in Block 1 of Session 2 only. Once stimulus-response associations were again refamiliarized and deliberation unnecessary, DS activation disappeared for Blocks 2-8, Session 2. Interference from previously learned right or left button responses with incongruent location judgments in a location Stroop task provided evidence that automaticity of stimulus-specific button-press responses had developed by the end of Session 2. These results suggest that DS mediates decision making and not late-stage learning, reconciling two, independently evolving and well-supported literatures that implicate DS in different cognitive functions. Hum Brain Mapp 38:6133-6156, 2017. © 2017 Wiley Periodicals, Inc.