Unknown

Dataset Information

0

Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel.


ABSTRACT: The monolacunary Keggin-type [PW11O39]7- (PW11) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (N-trimethoxysilypropyl-N, N, N-trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW11@TMA-SBA-15 and PW11@TMA-PMOE composites were evaluated as heterogeneous catalysts in the oxidative desulfurization of a model diesel. The PW11@TMA-SBA-15 catalyst showed a remarkable desulfurization performance by reaching ultra-low sulfur levels (<10 ppm) after only 60 min using either a biphasic extractive and catalytic oxidative desulfurization (ECODS) system (1:1 MeCN/diesel) or a solvent-free catalytic oxidative desulfurization (CODS) system. Furthermore, the mesoporous silica composite was able to be recycled for six consecutive cycles without any apparent loss of activity. The promising results have led to the application of the catalyst in the desulfurization of an untreated real diesel supplied by CEPSA (1,335 ppm S) using the biphasic system. The system has proved to be a highly efficient process by reaching desulfurization values higher than 90% for real diesel during three consecutive cycles.

SUBMITTER: Ribeiro SO 

PROVIDER: S-EPMC6868090 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel.

Ribeiro Susana O SO   Granadeiro Carlos M CM   Corvo Marta C MC   Pires João J   Campos-Martin José M JM   de Castro Baltazar B   Balula Salete S SS  

Frontiers in chemistry 20191114


The monolacunary Keggin-type [PW<sub>11</sub>O<sub>39</sub>]<sup>7-</sup> (PW<sub>11</sub>) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (<i>N</i>-trimethoxysilypropyl-<i>N, N, N</i>-trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW<sub>11</sub>@TMA-SBA-15 and PW<sub>11</sub>@TMA-PMOE composit  ...[more]

Similar Datasets

| S-EPMC3832851 | biostudies-other
| S-EPMC6359328 | biostudies-literature
| S-EPMC8538493 | biostudies-literature
| S-EPMC7796352 | biostudies-literature
| S-EPMC7114701 | biostudies-literature
| S-EPMC3679167 | biostudies-literature
| S-EPMC3465401 | biostudies-literature
| S-EPMC6044972 | biostudies-literature
| S-EPMC7925758 | biostudies-literature
| S-EPMC7296706 | biostudies-literature