Changes in intrinsic connectivity of the brain's reading network following intervention in children with autism.
Ontology highlight
ABSTRACT: While task-based neuroimaging studies have identified alterations in neural circuitry underlying language processing in children with autism spectrum disorders [ASD], resting state functional magnetic resonance imaging [rsfMRI] is a promising alternative to the constraints posed by task-based fMRI. This study used rsfMRI, in a longitudinal design, to study the impact of a reading intervention on connectivity of the brain regions involved in reading comprehension in children with ASD. Functional connectivity was examined using group independent component analysis (GICA) and seed-based correlation analysis of Broca's and Wernicke's areas, in three groups of participants: an experimental group of ASD children (ASD-EXP), a wait list control group of ASD children (ASD-WLC), and a group of typically developing (TD) control children. Both GICA and seed-based analyses revealed stronger functional connectivity of Broca's and Wernicke's areas in the ASD-EXP group postintervention. Additionally, improvement in reading comprehension in the ASD-EXP group was correlated with greater connectivity in both Broca's and Wernicke's area in the GICA identified reading network component. In addition, increased connectivity between the Broca's area and right postcentral and right STG, and the Wernicke's area and LIFG, were also correlated with greater improvement in reading comprehension. Overall, this study revealed widespread changes in functional connectivity of the brain's reading network as a result of intervention in children with ASD. These novel findings provide valuable insights into the neuroplasticity of brain areas underlying reading and the impact of intensive intervention in modifying them in children with ASD.
SUBMITTER: Murdaugh DL
PROVIDER: S-EPMC6869516 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA