Unknown

Dataset Information

0

Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell.


ABSTRACT: We report on light-emitting electrochemical cells, comprising a solution-processed single-layer active material and air-stabile electrodes, that exhibit efficient and bright thermally activated delayed fluorescence. Our optimized devices delivers a luminance of 120?cd?m-2 at an external quantum efficiency of 7.0%. As such, it outperforms the combined luminance/efficiency state-of-the art for thermally activated delayed fluorescence light-emitting electrochemical cells by one order of magnitude. For this end, we employed a polymeric blend host for balanced electrochemical doping and electronic transport as well as uniform film formation, an optimized concentration (<1 mass%) of guest for complete host-to-guest energy transfer at minimized aggregation and efficient emission, and an appropriate concentration of an electrochemically stabile electrolyte for desired doping effects. The generic nature of our approach is manifested in the attainment of bright and efficient thermally activated delayed fluorescence emission from three different light-emitting electrochemical cells with invariant host:guest:electrolyte number ratio.

SUBMITTER: Lundberg P 

PROVIDER: S-EPMC6874610 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell.

Lundberg Petter P   Tsuchiya Youichi Y   Lindh E Mattias EM   Tang Shi S   Adachi Chihaya C   Edman Ludvig L  

Nature communications 20191122 1


We report on light-emitting electrochemical cells, comprising a solution-processed single-layer active material and air-stabile electrodes, that exhibit efficient and bright thermally activated delayed fluorescence. Our optimized devices delivers a luminance of 120 cd m<sup>-2</sup> at an external quantum efficiency of 7.0%. As such, it outperforms the combined luminance/efficiency state-of-the art for thermally activated delayed fluorescence light-emitting electrochemical cells by one order of  ...[more]

Similar Datasets

| S-EPMC5428273 | biostudies-literature
| S-EPMC6145404 | biostudies-literature
| S-EPMC7460548 | biostudies-literature
| S-EPMC7240071 | biostudies-literature
| S-EPMC8175730 | biostudies-literature
| S-EPMC3705585 | biostudies-literature
| S-EPMC7054483 | biostudies-literature
| S-EPMC5995865 | biostudies-literature
| S-EPMC9906651 | biostudies-literature
| S-EPMC6079109 | biostudies-literature