Unknown

Dataset Information

0

Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism.


ABSTRACT: Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.

SUBMITTER: Luchi AM 

PROVIDER: S-EPMC6881835 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism.

Luchi Adriano M AM   Villafañe Roxana N RN   Gómez Chávez J Leonardo JL   Bogado M Lucrecia ML   Angelina Emilio L EL   Peruchena Nelida M NM  

ACS omega 20191112 22


<i>Trypanosoma cruzi</i>, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in th  ...[more]

Similar Datasets

| S-EPMC10507867 | biostudies-literature
2022-10-20 | PXD022225 | Pride
| S-EPMC6831742 | biostudies-literature
2019-11-07 | GSE124203 | GEO
| S-EPMC9995617 | biostudies-literature
| S-EPMC8206074 | biostudies-literature
| S-EPMC9269679 | biostudies-literature
| S-EPMC9716034 | biostudies-literature
| S-EPMC6346381 | biostudies-literature
| S-EPMC9197484 | biostudies-literature