Ontology highlight
ABSTRACT: Background
The production of photocatalytic nanoparticles such as TiO2 has received increasing interest for biomedical and wastewater treatment applications. However, the conventional synthesis of such materials faces several environmental concerns.Methods
In this work, green synthesis is addressed to prepare TiO2 nanoparticles at large scale using Lemongrass (Cymbopogon citratus) and titanium isopropoxide (TTIP). This process was designed and modeled using computer-aided process engineering (CAPE) in order to obtain the extended mass/energy balances, as well as operating parameters. Process simulation was carried out using the commercial software Aspen Plus®. In addition, energy performance of large-scale nanoparticle production was analyzed to identify alternatives for process improvement from an exergetic point of view.Results
The production capacity of the plant was estimated as 1,496 t/y of TiO2 nanoparticles by the conversion of 32,675 t/y lemongrass and 5,724 t/y TTIP. Hence, the overall production yield is 0.26 kg TiO2/kg TTIP. Exergy analysis reported an overall exergy efficiency of 0.27% and an exergy loss of 159,824.80 MJ/h. These results suggest that such a process requires the implementation of process improvement strategies to reach a more sustainable design from energy and thermodynamic viewpoints.
SUBMITTER: Meramo-Hurtado S
PROVIDER: S-EPMC6882416 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
Meramo-Hurtado Samir S Moreno-Sader Kariana K González-Delgado Ángel D ÁD
PeerJ 20191125
<h4>Background</h4>The production of photocatalytic nanoparticles such as TiO<sub>2</sub> has received increasing interest for biomedical and wastewater treatment applications. However, the conventional synthesis of such materials faces several environmental concerns.<h4>Methods</h4>In this work, green synthesis is addressed to prepare TiO<sub>2</sub> nanoparticles at large scale using Lemongrass (<i>Cymbopogon citratus</i>) and titanium isopropoxide (TTIP). This process was designed and modeled ...[more]