Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor.
Ontology highlight
ABSTRACT: Acinetobacter baumannii is a frequent cause of the nosocomial infections. Herein, a novel isothermal amplification technique, multiple cross displacement amplification (MCDA) is employed for detecting all A. baumannii strains and identifying the strains harboring blaOXA-23-like gene. The duplex MCDA assay, which targets the pgaD and blaOXA-23-like genes, could identify the A. baumannii isolates and differentiate these isolates harboring blaOXA-23-like gene. The disposable lateral flow biosensors (LFB) were used for analyzing the MCDA products. A total of sixty-eight isolates, include fifty-three A. baumannii strains and fifteen non-A. baumannii strains, were employed to optimize MCDA methods and determine the sensitivity, specificity and feasibility. The optimal reaction condition is found to be 63?°C within 1?h, with limit of detection at 100 fg templates per tube for pgaD and blaOXA-23-like genes in pure cultures. The specificity of this assay is 100%. Moreover, the practical application of the duplex MCDA-LFB assay was evaluated using clinical samples, and the results obtained from duplex MCDA-LFB method were consistent with conventional culture-based technique. In sum, the duplex MCDA-LFB assay appears to be a reliable, rapid and specific technique to detect all A. baumannii strains and identify these strains harboring blaOXA-23-like gene for appropriate antibiotic therapy.
SUBMITTER: Hu S
PROVIDER: S-EPMC6884502 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA