Project description:Concentration dependency of phenotypic and genotypic isoniazid-rifampicin resistance emergence was investigated to obtain a mechanistic understanding on how anti-mycobacterial drugs facilitate the emergence of bacterial populations that survive throughout treatment. Using static kill curve experiments, observing two evolution cycles, it was demonstrated that rifampicin resistance was the result of non-specific mechanisms and not associated with accumulation of drug resistance encoding SNPs. Whereas, part of isoniazid resistance could be accounted for by accumulation of specific SNPs, which was concentration dependent. Using a Hollow Fibre Infection Model it was demonstrated that emergence of resistance did not occur at concentration-time profiles mimicking the granuloma. This study showed that disentangling and quantifying concentration dependent emergence of resistance provides an improved rational for drug and dose selection although further work to understand the underlying mechanisms is needed to improve the drug development pipeline.
Project description:Heteroresistance - the simultaneous presence of drug-susceptible and -resistant organisms - is common in Mycobacterium tuberculosis. In this study, we aimed to determine the limit of detection (LOD) of genotypic assays to detect gatifloxacin-resistant mutants in experimentally mixed populations. A fluoroquinolone-susceptible M. tuberculosis mother strain (S) and its in vitro selected resistant daughter strain harbouring the D94G mutation in gyrA (R) were mixed at different ratio's. Minimum inhibitory concentrations (MICs) against gatifloxacin were determined, while PCR-based techniques included: line probe assays (Genotype MTBDRsl and GenoScholar-FQ?+?KM TB II), Sanger sequencing and targeted deep sequencing. Droplet digital PCR was used as molecular reference method. A breakpoint concentration of 0.25?mg/L allows the phenotypic detection of ?1% resistant bacilli, whereas at 0.5?mg/L???5% resistant bacilli are detected. Line probe assays detected ?5% mutants. Sanger sequencing required the presence of around 15% mutant bacilli to be detected as (hetero) resistant, while targeted deep sequencing detected ?1% mutants. Deep sequencing and phenotypic testing are the most sensitive methods for detection of fluoroquinolone-resistant minority populations, followed by line probe assays (provided that the mutation is confirmed by a mutation band), while Sanger sequencing proved to be the least sensitive method.
Project description:To explore the phenotypic and genotypic characterization of pyrazinamide (PZA) resistance among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Zhejiang province, a total of 274 MDR-TB isolates were collected. Drug susceptibility testing and spoligotyping were performed on all clinical isolates. In addition, the mutated features of PZA-resistant loci, including pncA and rpsA, were also analyzed by DNA sequencing. Our results showed that the prevalence of PZA resistance among MDR-TB strains in Zhejiang province was 43.07% and that PZA resistance was associated with concomitant resistance to streptomycin. The majority of PZA-resistant MDR-TB isolates belonged to the Beijing family. Mutations within pncA, not rpsA, constituted the primary mechanism of PZA resistance. Among 118 PZA-resistant isolates, 53 different mutations were observed in pncA, and most of them were point mutations. Compared with the phenotypic data, DNA sequencing of pncA has sensitivity and specificity of 77.97% and 96.79%, respectively. Analysis of pncA provided a robust tool for rapid detection of PZA drug resistance.
Project description:RationaleMinority drug-resistant Mycobacterium tuberculosis subpopulations can be associated with phenotypic resistance but are poorly detected by Sanger sequencing or commercial molecular diagnostic assays.ObjectivesTo determine the role of targeted next-generation sequencing in resolving these minor variant subpopulations.MethodsWe used single molecule overlapping reads (SMOR), a targeted next-generation sequencing approach that dramatically reduces sequencing error, to analyze primary cultured isolates phenotypically resistant to rifampin, fluoroquinolones, or aminoglycosides, but for which Sanger sequencing found no resistance-associated variants (RAVs) within respective resistance-determining regions (study group). Isolates also underwent single-colony selection on antibiotic-containing agar, blinded to sequencing results. As a positive control, isolates with multiple colocalizing chromatogram peaks were also analyzed (control group).Measurements and main resultsAmong 61 primary culture isolates (25 study group and 36 control group), SMOR described 66 (49%) and 45 (33%) of 135 total heteroresistant RAVs at frequencies less than 5% and less than 1% of the total mycobacterial population, respectively. In the study group, SMOR detected minor resistant variant subpopulations in 80% (n = 20/25) of isolates with no Sanger-identified RAVs (median subpopulation size, 1.0%; interquartile range, 0.2-3.9%). Single-colony selection on drug-containing media corroborated SMOR results for 90% (n = 18/20) of RAV-containing specimens, and the absence of RAVs in 60% (n = 3/5) of isolates. Overall, Sanger sequencing was concordant with SMOR for 77% (n = 53/69) of macroheteroresistant (5-95% total population), but only 5% of microheteroresistant (<5%) subpopulations (n = 3/66) across both groups.ConclusionsCryptic minor variant mycobacterial subpopulations exist below the resolving capability of current drug susceptibility testing methodologies, and may explain an important proportion of false-negative resistance determinations.
Project description:Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Project description:Ethambutol (EMB) is an essential first-line drug for tuberculosis (TB) treatment. Nucleotide substitutions at embB codon 306 (embB306) have been proposed to be a potential marker for EMB resistance and a predictor of broad drug resistance in clinical Mycobacterium tuberculosis isolates. However, discordant findings about the association between embB306 mutations and EMB resistance were reported. Hebei Province is located in the Beijing-Tianjin-Hebei integration region in China; however, little information about the genetic diversity of the embB locus in this area is available. In this study, we sequenced the region surrounding embB306 (codons 207 to 445) in 62 ethambutol-resistant (EMBr) isolates, 214 ethambutol-susceptible isolates resistant to other first-line drugs (EMBs isolates), and 100 pan-sensitive isolates. Our data indicated that none of the pan-sensitive isolates showed mutations at embB306 and 63 drug-resistant isolates harbored embB306 substitutions, with these substitutions being found in 56.5% (35/62) of EMBr isolates and 13.1% (28/214) of EMBs isolates. A significant association between the embB306 mutation and resistance to isoniazid, rifampin, EMB, and multiple drugs was observed, and the rate of mutation of embB306 increased with increasing numbers of first-line drugs to which the isolates were resistant. The embB306 mutation is not the sole causative factor for EMB resistance, and the poor sensitivity limits its utility as a marker for drug-resistant TB. However, it may be a potential marker for broad drug resistance, especially for multidrug resistance. The mycobacterial interspersed repetitive unit-variable-number tandem-repeat profiles may serve as markers for predicting the embB306 substitutions that may occur in drug-resistant M. tuberculosis isolates under antimicrobial selection pressure.
Project description:Mycobacterium tuberculosis (Mtb) has different features depending on different geographic areas. We collected Mtb strains from patients with smear-positive pulmonary tuberculosis in Da Nang, central Vietnam. Using a whole genome sequencing platform, including genome assembly complemented by long-read-sequencing data, genomic characteristics were studied. Of 181 Mtb isolates, predominant Vietnamese EAI4_VNM and EAI4-like spoligotypes (31.5%), ZERO strains (5.0%), and part of EAI5 (11.1%) were included in a lineage-1 (L1) sublineage, i.e., L1.1.1.1. These strains were found less often in younger people, and they genetically clustered less frequently than other modern strains. Patients infected with ZERO strains demonstrated less lung infiltration. A region in RD2bcg spanning six loci, i.e., PE_PGRS35, cfp21, Rv1985c, Rv1986, Rv1987, and erm(37), was deleted in EAI4_VNM, EAI4-like, and ZERO strains, whereas another 118 bp deletion in furA was specific only to ZERO strains. L1.1.1.1-sublineage-specific deletions in PE_PGRS4 and PE_PGRS22 were also identified. RD900, seen in ancestral lineages, was present in majority of the L1 members. All strains without IS6110 (5.0%) had the ZERO spoligo-pattern. Distinctive features of the ancestral L1 strains provide a basis for investigation of the modern versus ancestral Mtb lineages and allow consideration of countermeasures against this heterogeneous pathogen.
Project description:BackgroundMultidrug-resistant tuberculosis (MDR-TB) remains a major public health problem in many high tuberculosis (TB) burden countries. Phenotypic drug susceptibility testing (DST) take several weeks or months to result, but line probe assays and Xpert/Rif Ultra assay detect a limited number of resistance conferring gene mutations. Whole genome sequencing (WGS) is an advanced molecular testing method which theoretically can predict the resistance of M. tuberculosis (Mtb) isolates to all anti-TB agents through a single analysis.MethodsHere, we aimed to identify the level of concordance between the phenotypic and WGS-based genotypic drug susceptibility (DS) patterns of MDR-TB isolates. Overall, data for 12 anti-TB medications were analyzed.ResultsIn total, 63 MDR-TB Mtb isolates were included in the analysis, representing 27.4% of the total number of MDR-TB cases in Latvia in 2012-2014. Among them, five different sublineages were detected, and 2.2.1 (Beijing group) and 4.3.3 (Latin American-Mediterranean group) were the most abundant. There were 100% agreement between phenotypic and genotypic DS pattern for isoniazid, rifampicin, and linezolid. High concordance rate (> 90%) between phenotypic and genotypic DST results was detected for ofloxacin (93.7%), pyrazinamide (93.7%) and streptomycin (95.4%). Phenotypic and genotypic DS patterns were poorly correlated for ethionamide (agreement 56.4%), ethambutol (85.7%), amikacin (82.5%), capreomycin (81.0%), kanamycin (85.4%), and moxifloxacin (77.8%). For capreomycin, resistance conferring mutations were not identified in several phenotypically resistant isolates, and, in contrary, for ethionamide, ethambutol, amikacin, kanamycin, and moxifloxacin the resistance-related mutations were identified in several phenotypically sensitive isolates.ConclusionsWGS is a valuable tool for rapid genotypic DST for all anti-TB agents. For isoniazid and rifampicin phenotypic DST potentially can be replaced by genotypic DST based on 100% agreement between the tests. However, discrepant results for other anti-TB agents limit their prescription based solely on WGS data. For clinical decision, at the current level of knowledge, there is a need for combination of genotypic DST with modern, validated phenotypic DST methodologies for those medications which did not showed 100% agreement between the methods.
Project description:Background. Currently, mutations in rpoB, KatG, and rrs genes and inhA promoter were considered to be involved in conferring resistance to rifampicin, isoniazid, and streptomycin in Mycobacterium tuberculosis (MTB). Objective. The aims of this study were to detect the prevalence of first-line tuberculosis (TB) drug resistance among a group of previously treated and newly detected TB patients, to determine the association between prevalence of multidrug resistance (MDR) and demographic information (age and sex), to explain genes correlated with MDR Mycobacterium tuberculosis, and to characterize MTB via 16S ribosomal RNA (16S rRNA) analysis. Methods. A hundred MTB isolates from Sudanese pulmonary TB patients were included in the study. The proportional method of drug susceptibility test was carried out on Löwenstein-Jensen media. Multiplex PCR of rpoB and KatG genes and inhA promoter was conducted; then rrs genes were amplified by conventional PCR and were sequenced. The sequences of the PCR product were compared with known rrs gene sequences in the GenBank database by multiple sequence alignment tools. Result. The prevalence of MDR was 14.7% among old cases and 5.3% among newly diagnosed cases. Conclusion. Mutations in rrs could be considered as a diagnostic marker.
Project description:The World Health Organization has recommended use of molecular-based tests MTBDRplus and GeneXpert MTB/RIF to diagnose multidrug-resistant tuberculosis in developing and high-burden countries. Both tests are based on detection of mutations in the Rifampin (RIF) Resistance-Determining Region of DNA-dependent RNA Polymerase gene (rpoB). Such mutations are found in 95-98% of Mycobacterium tuberculosis strains determined to be RIF-resistant by the "gold standard" culture-based drug susceptibility testing (DST). We report the phenotypic and genotypic characterization of 153 consecutive clinical Mycobacterium tuberculosis strains diagnosed as RIF-resistant by molecular tests in our laboratory in Port-au-Prince, Haiti. 133 isolates (86.9%) were resistant to both RIF and Isoniazid and 4 isolates (2.6%) were RIF mono-resistant in MGIT SIRE liquid culture-based DST. However the remaining 16 isolates (10.5%) tested RIF-sensitive by the assay. Five strains with discordant genotypic and phenotypic susceptibility results had RIF minimal inhibitory concentration (MIC) close to the cut-off value of 1 µg/ml used in phenotypic susceptibility assays and were confirmed as resistant by DST on solid media. Nine strains had sub-critical RIF MICs ranging from 0.063 to 0.5 µg/ml. Finally two strains were pan-susceptible and harbored a silent rpoB mutation. Our data indicate that not only detection of the presence but also identification of the nature of rpoB mutation is needed to accurately diagnose resistance to RIF in Mycobacterium tuberculosis. Observed clinical significance of low-level resistance to RIF supports the re-evaluation of the present critical concentration of the drug used in culture-based DST assays.