Unknown

Dataset Information

0

MiR-409-5p as a Regulator of Neurite Growth Is Down Regulated in APP/PS1 Murine Model of Alzheimer's Disease.


ABSTRACT: Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. Recent studies suggest that miRNA expression changes are associated with the development of AD. Our previous study showed that the expression level of miR-409-5p was stably downregulated in the early stage of APP/PS1 double transgenic mice model of AD. We now report that miR-409-5p impairs neurite outgrowth, decreases neuronal viability, and accelerates the progression of A?1 - 42-induced pathologies. In this study, we found that A?1 - 42 peptide significantly decreased the expression of miR-409-5p, which was consistent with the expression profile of miR-409-5p in the APP/PS1 mice cortexes. Plek was confirmed to be a potential regulatory target of miR-409-5p by luciferase assay and Western blotting. Overexpression of miR-409-5p has an obvious neurotoxicity in neuronal cell viability and differentiation, whereas Plek overexpression could partially rescue neurite outgrowth from this toxicity. Some cytoskeleton regulatory proteins have been found to be related to AD pathogenesis. Our data show some clues that cytoskeletal reorganization may play roles in AD pathology. The early downregulation of miR-409-5p in AD progression might be a self-protective reaction to alleviate the synaptic damage induced by A?, which may be used as a potential early biomarker of AD.

SUBMITTER: Guo J 

PROVIDER: S-EPMC6892840 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

MiR-409-5p as a Regulator of Neurite Growth Is Down Regulated in APP/PS1 Murine Model of Alzheimer's Disease.

Guo Jing J   Cai Yifei Y   Ye Xiaoyang X   Ma Nana N   Wang Yuan Y   Yu Bo B   Wan Jun J  

Frontiers in neuroscience 20191128


Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. Recent studies suggest that miRNA expression changes are associated with the development of AD. Our previous study showed that the expression level of miR-409-5p was stably downregulated in the early stage of APP/PS1 double transgenic mice model of AD. We now report that miR-409-5p impairs neurite outgrowth, decreases neuronal viability, and accelerates the progression of Aβ<sub>1</sub> <sub>-</sub> <sub>42</sub>-induced path  ...[more]

Similar Datasets

| S-EPMC6404576 | biostudies-literature
2020-11-24 | GSE144746 | GEO
| S-EPMC4791593 | biostudies-literature
| S-EPMC10720112 | biostudies-literature
| S-EPMC7471266 | biostudies-literature
| S-EPMC10010148 | biostudies-literature
| S-EPMC9879070 | biostudies-literature
2017-12-31 | E-MTAB-5668 | biostudies-arrayexpress
| S-EPMC3812809 | biostudies-literature
| S-EPMC5094311 | biostudies-literature