Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer.
Ontology highlight
ABSTRACT: Resident macrophages in the tumor microenvironment exert a dual role in tumor progression. So far, the mechanism of intratumoral macrophage generation is still largely unknown. In the present study, the importance of macrophages in the pro-tumor role of gastric cancer-derived mesenchymal stromal cells (GC-MSCs) was observed in a mouse xenograft model with macrophage depletion. In gastric cancer tissues, high expression levels of Ym-1, Fizz-1, arginase-1, and CCR-2, as well as a low expression level of iNOS, were verified, and co-localization of GC-MSCs and tumor-associated macrophages (TAMs) was observed by dual immunofluorescence histochemistry. TAMs isolated from gastric cancer tissues predominantly displayed an M2 phenotype. In a co-culture system, the contribution of GC-MSCs to M2 polarization of macrophages was confirmed by the M2-related protein expression, M2-like immunophenotype and cytokine profile of GC-MSC-primed macrophages in vitro. Blockade of IL-6/IL-8 by neutralizing antibodies significantly attenuated the promoting effect of GC-MSCs on M2-like macrophage polarization via the JAK2/STAT3 signaling pathway. In addition, GC-MSC-primed macrophages promoted the migration and invasion of gastric cancer cells, and the process of EMT in gastric cancer cells was significantly enhanced by GC-MSC-primed macrophage treatment. Our study showed that tumor-promoting GC-MSCs contribute to M2 macrophage polarization within the gastric cancer niche through considerable secretion of IL-6 and IL-8. These GC-MSC-primed macrophages can subsequently prompt gastric cancer metastasis via EMT promotion in gastric cancer cells.
SUBMITTER: Li W
PROVIDER: S-EPMC6892854 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA