Unknown

Dataset Information

0

Tuneable reflexes control antennal positioning in flying hawkmoths.


ABSTRACT: Complex behaviours may be viewed as sequences of modular actions, each elicited by specific sensory cues in their characteristic timescales. From this perspective, we can construct models in which unitary behavioural modules are hierarchically placed in context of related actions. Here, we analyse antennal positioning reflex in hawkmoths as a tuneable behavioural unit. Mechanosensory feedback from two antennal structures, Böhm's bristles (BB) and Johnston's organs (JO), determines antennal position. At flight onset, antennae attain a specific position, which is maintained by feedback from BB. Simultaneously, JO senses deflections in flagellum-pedicel joint due to frontal airflow, to modulate its steady-state position. Restricting JO abolishes positional modulation but maintains stability against perturbations. Linear feedback models are sufficient to predict antennal dynamics at various set-points. We modelled antennal positioning as a hierarchical neural-circuit in which fast BB feedback maintains instantaneous set-point, but slow JO feedback modulates it, thereby elucidating mechanisms underlying its robustness and flexibility.

SUBMITTER: Natesan D 

PROVIDER: S-EPMC6898381 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tuneable reflexes control antennal positioning in flying hawkmoths.

Natesan Dinesh D   Saxena Nitesh N   Ekeberg Örjan Ö   Sane Sanjay P SP  

Nature communications 20191206 1


Complex behaviours may be viewed as sequences of modular actions, each elicited by specific sensory cues in their characteristic timescales. From this perspective, we can construct models in which unitary behavioural modules are hierarchically placed in context of related actions. Here, we analyse antennal positioning reflex in hawkmoths as a tuneable behavioural unit. Mechanosensory feedback from two antennal structures, Böhm's bristles (BB) and Johnston's organs (JO), determines antennal posit  ...[more]

Similar Datasets

| S-EPMC3530516 | biostudies-literature
| S-EPMC9259029 | biostudies-literature
| S-EPMC5636272 | biostudies-literature
| S-EPMC9475040 | biostudies-literature
| S-EPMC2952741 | biostudies-literature
| S-EPMC8251865 | biostudies-literature
| S-EPMC6503675 | biostudies-literature
| S-EPMC4756846 | biostudies-literature
| S-EPMC7485384 | biostudies-literature
| S-EPMC6303104 | biostudies-literature