Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum.
Ontology highlight
ABSTRACT: PREMISE:Most plants interact with mycorrhizal fungi and animal pollinators simultaneously. Yet, whether mycorrhizae affect traits important to pollination remains poorly understood and may depend on the match between host and fungal genotypes. Here, we examined how ericoid mycorrhizal fungi affected flowering phenology, floral traits, and reproductive success, among eight genotypes of highbush blueberry, Vaccinium corymbosum (Ericaceae). We asked three overarching questions: (1) Do genotypes differ in response to inoculation? (2) How does inoculation affect floral and flowering traits? (3) Are inoculated plants more attractive to pollinators and less pollen limited than non-inoculated plants of the same genotype? METHODS:To examine these questions, we experimentally inoculated plants with ericoid mycorrhizal fungi, grew the plants in the field, and measured flowering and floral traits over 2 years. In year 2, we conducted a hand-pollination experiment to test whether plants differed in pollen limitation. RESULTS:Inoculated plants had significantly higher levels of colonization for some genotypes, and there were significant floral trait changes in inoculated plants for some genotypes as well. On average, inoculated plants produced significantly larger floral displays, more fruits per inflorescence, and heavier fruits with lower sugar content, than non-inoculated, control plants. Hand pollination enhanced the production of fruits, and fruit mass, for non-inoculated plants but not for those that were inoculated. CONCLUSIONS:Our results demonstrate that inoculation with ericoid mycorrhizal fungi enhanced flowering and altered investment in reproduction in genotype-specific ways. These findings underscore the importance of examining belowground symbionts and genotype-specific responses in their hosts to fully understand the drivers of aboveground interactions.
SUBMITTER: Brody AK
PROVIDER: S-EPMC6899715 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA