Unknown

Dataset Information

0

Structure-Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting Escherichia coli.


ABSTRACT: Intravenous administration of a prodrug, chloramphenicol succinate (CLsu), is ineffective. Recently, we have shown that conjugation of diglycine of CLsu (CLsuGG) not only increases the antibiotic efficacy against Escherichia coli but also reduces adverse drug effects against bone marrow stromal cells. Here, we report the synthesis of structural analogues of CLsuGG and their activities against E. coli. These analogues reveal several trends: (i) except the water-insoluble analogues, the attachment of peptides to CLsu enhances the efficacy of the prodrugs; (ii) negative charges, high steric hindrance in the side chains, or a rigid diester decreases the activities of prodrugs in comparison to CLsuGG; (iii) dipeptides apparently increase the efficacy of the prodrugs most effectively; and so forth. This work suggests that conjugating peptides to CLsu effectively modulates the properties of prodrugs. The structure-activity relationship of these new conjugates may provide useful insights for expanding the pool of antibiotics.

SUBMITTER: Wang J 

PROVIDER: S-EPMC6902879 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure-Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting <i>Escherichia coli</i>.

Wang Jiaqing J   Shy Adrianna A   Wu Difei D   Cooper Deani L DL   Xu Jiashu J   He Hongjian H   Zhan Wenjun W   Sun Shenghuan S   Lovett Susan T ST   Xu Bing B  

Journal of medicinal chemistry 20191112 22


Intravenous administration of a prodrug, chloramphenicol succinate (CLsu), is ineffective. Recently, we have shown that conjugation of diglycine of CLsu (CLsuGG) not only increases the antibiotic efficacy against <i>Escherichia coli</i> but also reduces adverse drug effects against bone marrow stromal cells. Here, we report the synthesis of structural analogues of CLsuGG and their activities against <i>E. coli</i>. These analogues reveal several trends: (i) except the water-insoluble analogues,  ...[more]

Similar Datasets

| S-EPMC8911640 | biostudies-literature
| S-EPMC5676038 | biostudies-literature
| S-EPMC8321558 | biostudies-literature
| S-EPMC2700255 | biostudies-literature
| S-EPMC9030089 | biostudies-literature
| S-EPMC87642 | biostudies-literature
| S-EPMC1131654 | biostudies-other
| S-EPMC2881472 | biostudies-literature
| S-EPMC6105812 | biostudies-literature
| S-EPMC5438648 | biostudies-literature