Computational holographic Maxwellian near-eye display with an expanded eyebox.
Ontology highlight
ABSTRACT: The Maxwellian near-eye displays have attracted growing interest in various applications. By using a confined pupil, a Maxwellian display presents an all-in-focus image to the viewer where the image formed on the retina is independent of the optical power of the eye. Despite being a promising technique, current Maxwellian near-eye displays suffer from various limitations such as a small eyebox, a bulky setup and a high cost. To overcome these drawbacks, we present a holographic Maxwellian near-eye display based on computational imaging. By encoding a complex wavefront into amplitude-only signals, we can readily display the computed histogram on a widely-accessible device such as a liquid-crystal or digital light processing display, creating an all-in-focus virtual image augmented on the real-world objects. Additionally, to expand the eyebox, we multiplex the hologram with multiple off-axis plane waves, duplicating the pupils into an array. The resultant method features a compact form factor because it requires only one active electronic component, lending credence to its wearable applications.
SUBMITTER: Chang C
PROVIDER: S-EPMC6904470 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA