Genome-wide identification and characterization of R2R3-MYB genes in Medicago truncatula.
Ontology highlight
ABSTRACT: MYB is a large family of plant transcription factors. Its function has been identified in several plants, while there are few reports in Medicago truncatula. In this study, we used RNA-seq data to analyze and identify R2R3-MYB genes in the genome of Medicago truncatula. Phylogenetic analysis classified 150 MtMYB genes into 21 subfamilies with homologs. Out of the 150 MtMYB genes, 139 were distributed among 8 chromosomes, with tandem duplications (TD) and segment duplications (SD). Microarray data were used for functional analysis of the MtMYB genes during growth and developmental processes providing evidence for a role in tissues differentiation, seed development processes, and especially the nodulation process. Furthermore, we investigated the expression of MtMYB genes in response to abiotic stresses using RNA-seq data, which confirmed the critical roles in signal transduction and regulation processes under abiotic stress. We used quantitative real-time PCR (qRT-PCR) to validate expression profiles. The expression pattern of M. truncatula MYB genes under different abiotic stress conditions suggest that some may play a major role in cross-talk among different signal transduction pathways in response to abiotic stresses. Our study will serve as a foundation for future research into the molecular function of M. truncatula R2R3-MYB genes.
SUBMITTER: Li W
PROVIDER: S-EPMC6905446 | biostudies-literature | 2019 Jul-Sep
REPOSITORIES: biostudies-literature
ACCESS DATA