Unknown

Dataset Information

0

Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration.


ABSTRACT: Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition. However, the majority of bacterial species are still dependent on the ancient respiratory quinone, naphthoquinone (NQ). Gammaproteobacteria can biosynthesize both of these respiratory quinones, where UQ has been associated with aerobic lifestyle and NQ with anaerobic lifestyle. We engineered an obligate NQ-dependent ?-proteobacterium, Escherichia coli ?ubiC, and performed adaptive laboratory evolution to understand the selection against the use of NQ in an oxic environment and also the adaptation required to support the NQ-driven aerobic electron transport chain. A comparative systems-level analysis of pre- and postevolved NQ-dependent strains revealed a clear shift from fermentative to oxidative metabolism enabled by higher periplasmic superoxide defense. This metabolic shift was driven by the concerted activity of 3 transcriptional regulators (PdhR, RpoS, and Fur). Analysis of these findings using a genome-scale model suggested that resource allocation to reactive oxygen species (ROS) mitigation results in lower growth rates. These results provide a direct elucidation of a resource allocation tradeoff between growth rate and ROS mitigation costs associated with NQ usage under oxygen-replete condition.

SUBMITTER: Anand A 

PROVIDER: S-EPMC6911176 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration.

Anand Amitesh A   Chen Ke K   Yang Laurence L   Sastry Anand V AV   Olson Connor A CA   Poudel Saugat S   Seif Yara Y   Hefner Ying Y   Phaneuf Patrick V PV   Xu Sibei S   Szubin Richard R   Feist Adam M AM   Palsson Bernhard O BO  

Proceedings of the National Academy of Sciences of the United States of America 20191125 50


Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition. However, the majority of bacterial species are still dependent on the ancient respiratory  ...[more]

Similar Datasets

2019-11-25 | GSE135867 | GEO
| PRJNA560374 | ENA
| S-EPMC6564042 | biostudies-literature
| S-EPMC6861633 | biostudies-literature
2013-01-06 | E-GEOD-41232 | biostudies-arrayexpress
| S-EPMC9300285 | biostudies-literature
2013-01-06 | GSE41232 | GEO
| S-EPMC4737298 | biostudies-literature
2020-01-31 | E-MTAB-8691 | biostudies-arrayexpress
| S-EPMC1994589 | biostudies-literature