Unknown

Dataset Information

0

Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape.


ABSTRACT: Intensive agriculture can contribute to pollinator decline, exemplified by alarmingly high annual losses of honey bee colonies in regions dominated by annual crops (e.g., midwestern United States). As more natural or seminatural landscapes are transformed into monocultures, there is growing concern over current and future impacts on pollinators. To forecast how landscape simplification can affect bees, we conducted a replicated, longitudinal assessment of honey bee colony growth and nutritional health in an intensively farmed region where much of the landscape is devoted to production of corn and soybeans. Surprisingly, colonies adjacent to soybean fields surrounded by more cultivated land grew more during midseason than those in areas of lower cultivation. Regardless of the landscape surrounding the colonies, all experienced a precipitous decline in colony weight beginning in August and ended the season with reduced fat stores in individual bees, both predictors of colony overwintering failure. Patterns of forage availability and colony nutritional state suggest that late-season declines were caused by food scarcity during a period of extremely limited forage. To test if habitat enhancements could ameliorate this response, we performed a separate experiment in which colonies provided access to native perennials (i.e., prairie) were rescued from both weight loss and reduced fat stores, suggesting the rapid decline observed in these agricultural landscapes is not inevitable. Overall, these results show that intensively farmed areas can provide a short-term feast that cannot sustain the long-term nutritional health of colonies; reintegration of biodiversity into such landscapes may provide relief from nutritional stress.

SUBMITTER: Dolezal AG 

PROVIDER: S-EPMC6911205 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape.

Dolezal Adam G AG   St Clair Ashley L AL   Zhang Ge G   Toth Amy L AL   O'Neal Matthew E ME  

Proceedings of the National Academy of Sciences of the United States of America 20191125 50


Intensive agriculture can contribute to pollinator decline, exemplified by alarmingly high annual losses of honey bee colonies in regions dominated by annual crops (e.g., midwestern United States). As more natural or seminatural landscapes are transformed into monocultures, there is growing concern over current and future impacts on pollinators. To forecast how landscape simplification can affect bees, we conducted a replicated, longitudinal assessment of honey bee colony growth and nutritional  ...[more]

Similar Datasets

| S-EPMC4648454 | biostudies-literature
2011-05-12 | GSE29252 | GEO
| S-EPMC7411617 | biostudies-literature
| S-EPMC3397935 | biostudies-literature
| S-EPMC8064301 | biostudies-literature
| S-EPMC139226 | biostudies-literature
2011-05-12 | E-GEOD-29252 | biostudies-arrayexpress
| S-EPMC3287300 | biostudies-literature
| S-EPMC5367273 | biostudies-literature
| S-EPMC4340757 | biostudies-literature