Human iPSCs-Derived Endothelial Cells with Mutation in HNF1A as a Model of Maturity-Onset Diabetes of the Young.
Ontology highlight
ABSTRACT: Patients with HNF1A-maturity-onset diabetes of the young (MODY) often develop endothelial dysfunction and related microvascular complications, like retinopathy. As the clinical phenotype of HNF1A-MODY diabetes varies considerably, we used human induced pluripotent stem cells (hiPSCs) from two healthy individuals (control) to generate isogenic lines with mutation in HNF1A gene. Subsequently, control hiPSCs and their respective HNF1A clones were differentiated toward endothelial cells (hiPSC-ECs) and different markers/functions were compared. Human iPSC-ECs from all cell lines showed similar expression of CD31 and Tie-2. VE-cadherin expression was lower in HNF1A-mutated isogenic lines, but only in clones derived from one control hiPSCs. In the other isogenic set and cells derived from HNF1A-MODY patients, no difference in VE-cadherin expression was observed, suggesting the impact of the genetic background on this endothelial marker. All tested hiPSC-ECs showed an expected angiogenic response regardless of the mutation introduced. Isogenic hiPSC-ECs responded similarly to stimulation with pro-inflammatory cytokine TNF- with the increase in ICAM-1 and permeability, however, HNF1A mutated hiPSC-ECs showed higher permeability in comparison to the control cells. Summarizing, both mono- and biallelic mutations of HNF1A in hiPSC-ECs lead to increased permeability in response to TNF- in normal glycemic conditions, which may have relevance to HNF1A-MODY microvascular complications.
SUBMITTER: Kachamakova-Trojanowska N
PROVIDER: S-EPMC6912300 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA