Unknown

Dataset Information

0

Re-Differentiation Capacity of Human Chondrocytes in Vitro Following Electrical Stimulation with Capacitively Coupled Fields.


ABSTRACT: Treatment of cartilage lesions remains a clinical challenge. Therefore, biophysical stimuli like electric fields seem to be a promising tool for chondrocytic differentiation and treatment of cartilage lesions. In this in vitro study, we evaluated the effects of low intensity capacitively coupled electric fields with an alternating voltage of 100 mVRMS (corresponds to 5.2 × 10-5 mV/cm) or 1 VRMS (corresponds to 5.2 × 10-4 mV/cm) with 1 kHz, on human chondrocytes derived from osteoarthritic (OA) and non-degenerative hyaline cartilage. A reduction of metabolic activity after electrical stimulation was more pronounced in non-degenerative cells. In contrast, DNA contents in OA cells were significantly decreased after electrical stimulation. A difference between 100 mVRMS and 1 VRMS was not detected. However, a voltage-dependent influence on gene and protein expression was observed. Both cell types showed increased synthesis rates of collagen (Col) II, glycosaminoglycans (GAG), and Col I protein following stimulation with 100 mVRMS, whereas this increase was clearly higher in OA cells. Our results demonstrated the sensitization of chondrocytes by alternating electric fields, especially at 100 mVRMS, which has an impact on chondrocytic differentiation capacity. However, analysis of further electrical stimulation parameters should be done to induce optimal hyaline characteristics of ex vivo expanded human chondrocytes.

SUBMITTER: Krueger S 

PROVIDER: S-EPMC6912508 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Re-Differentiation Capacity of Human Chondrocytes in Vitro Following Electrical Stimulation with Capacitively Coupled Fields.

Krueger Simone S   Achilles Sophie S   Zimmermann Julius J   Tischer Thomas T   Bader Rainer R   Jonitz-Heincke Anika A  

Journal of clinical medicine 20191024 11


Treatment of cartilage lesions remains a clinical challenge. Therefore, biophysical stimuli like electric fields seem to be a promising tool for chondrocytic differentiation and treatment of cartilage lesions. In this in vitro study, we evaluated the effects of low intensity capacitively coupled electric fields with an alternating voltage of 100 mV<sub>RMS</sub> (corresponds to 5.2 × 10<sup>-5</sup> mV/cm) or 1 V<sub>RMS</sub> (corresponds to 5.2 × 10<sup>-4</sup> mV/cm) with 1 kHz, on human cho  ...[more]

Similar Datasets

| S-EPMC8933463 | biostudies-literature
| S-EPMC3701653 | biostudies-literature
| S-EPMC7564315 | biostudies-literature
| S-EPMC10810886 | biostudies-literature
| S-EPMC10915174 | biostudies-literature
| S-EPMC7337168 | biostudies-literature
| S-EPMC8081629 | biostudies-literature
| S-EPMC6628227 | biostudies-literature
| S-EPMC5552067 | biostudies-literature
| S-EPMC9353484 | biostudies-literature