Haustoria - arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici.
Ontology highlight
ABSTRACT: As an obligate parasite, Puccinia striiformis f. sp. tritici (Pst) forms haustoria to obtain nutrients from plant cells for development, and these structures are essential for pathogen survival. To better understand the contribution of haustoria to the interactions with the host plants, we isolated haustoria from susceptible wheat leaves infected with Pst race CYR31 and sequenced their transcriptome as well as those of urediospores and germ tubes, and compared the three transcriptomes. A total of 3524 up-regulated genes were obtained from haustoria, of which 73 genes were related to thiamine biosynthesis, glycolysis and lipid metabolic processes. Silencing seven of the genes reduced the growth and development of Pst in wheat. More interestingly, 1197 haustorial secreted proteins (HASPs) were detected in haustoria, accounting for 34% of the total proteins, indicating that these HASPs play important roles in haustorium-mediated pathogenic progression. Furthermore, 69 HASPs were able to suppress Bax-triggered programmed cell death in tobacco. Additionally, 46 HASPs significantly reduced callose deposition in wheat using the type III secretion system. This study identified a large number of effectors through transcriptome sequencing, and the results revealed components of metabolic pathways that impact the growth and colonization of the pathogen and indicate essential functions of haustoria in the growth and pathogenicity of Pst.
SUBMITTER: Xu Q
PROVIDER: S-EPMC6913192 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA