Unknown

Dataset Information

0

Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images.


ABSTRACT:

Purpose

To classify radiation necrosis versus recurrence in glioma patients using a radiomics model based on combinational features and multimodality MRI images.

Methods

Fifty-one glioma patients who underwent radiation treatments after surgery were enrolled in this study. Sixteen patients revealed radiation necrosis while 35 patients showed tumor recurrence during the follow-up period. After treatment, all patients underwent T1-weighted, T1-weighted postcontrast, T2-weighted, and fluid-attenuated inversion recovery scans. A total of 41,284 handcrafted and 24,576 deep features were extracted for each patient. The 0.623?+?bootstrap method and the area under the curve (denoted as 0.632?+?bootstrap AUC) metric were used to select the features. The stepwise forward method was applied to construct 10 logistic regression models based on different combinations of image features.

Results

For handcrafted features on multimodality MRI, model 7 with seven features yielded the highest AUC of 0.9624, sensitivity of 0.8497, and specificity of 0.9083 in the validation set. These values were higher than the accuracy of using handcrafted features on single-modality MRI (paired t-test, p < 0.05, except sensitivity). For combined handcrafted and AlexNet features on multimodality MRI, model 6 with six features achieved the highest AUC of 0.9982, sensitivity of 0.9941, and specificity of 0.9755 in the validation set. These values were higher than the accuracy of using handcrafted features on multimodality MRI (paired t-test, p < 0.05).

Conclusions

Handcrafted and deep features extracted from multimodality MRI images reflecting the heterogeneity of gliomas can provide useful information for glioma necrosis/recurrence classification.

SUBMITTER: Zhang Q 

PROVIDER: S-EPMC6913337 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images.

Zhang Quan Q   Cao Jianyun J   Zhang Junde J   Bu Junguo J   Yu Yuwei Y   Tan Yujing Y   Feng Qianjin Q   Huang Meiyan M  

Computational and mathematical methods in medicine 20191201


<h4>Purpose</h4>To classify radiation necrosis versus recurrence in glioma patients using a radiomics model based on combinational features and multimodality MRI images.<h4>Methods</h4>Fifty-one glioma patients who underwent radiation treatments after surgery were enrolled in this study. Sixteen patients revealed radiation necrosis while 35 patients showed tumor recurrence during the follow-up period. After treatment, all patients underwent T1-weighted, T1-weighted postcontrast, T2-weighted, and  ...[more]

Similar Datasets

| S-EPMC8938812 | biostudies-literature
| S-EPMC7235325 | biostudies-literature
| S-EPMC7188738 | biostudies-literature
| S-EPMC6975558 | biostudies-literature
| S-EPMC8391559 | biostudies-literature
| S-EPMC6602944 | biostudies-literature
| S-EPMC11010849 | biostudies-literature
| S-EPMC6405136 | biostudies-literature
| S-EPMC7360821 | biostudies-literature
| S-EPMC9050568 | biostudies-literature