Unknown

Dataset Information

0

Characterization of Hydrothermal Deposition of Copper Oxide Nanoleaves on Never-Dried Bacterial Cellulose.


ABSTRACT: Bacterial cellulose (BC) has attracted a great deal of interest due to its green synthesis and biocompatibility. The nanoscale dimension of BC nanofibers generates an enormous surface area that enhances interactions with water and soluble components within aqueous solution. Recent work has demonstrated that BC is a versatile platform for the formation of metal/metal oxide nanocomposites. Copper oxide (CuO) is a useful material to compare nanomaterial deposition on BC with other cellulosic materials because of copper's colorimetric reaction as it forms copper hydroxide (Cu(OH)2) and transitions to CuO. In this research, we found that never-dried BC readily deposits CuO into its matrix in a way that does not occur on cotton, dried BC, or regenerated cellulose fibers. We conclude that hydroxyl group availability does not adequately explain our results and that intrafibrillar pores in never-dried BC nanofibers play a critical role in CuO deposition.

SUBMITTER: Warren WR 

PROVIDER: S-EPMC6918234 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of Hydrothermal Deposition of Copper Oxide Nanoleaves on Never-Dried Bacterial Cellulose.

Warren W Ross WR   LaJeunesse Dennis R DR  

Polymers 20191027 11


Bacterial cellulose (BC) has attracted a great deal of interest due to its green synthesis and biocompatibility. The nanoscale dimension of BC nanofibers generates an enormous surface area that enhances interactions with water and soluble components within aqueous solution. Recent work has demonstrated that BC is a versatile platform for the formation of metal/metal oxide nanocomposites. Copper oxide (CuO) is a useful material to compare nanomaterial deposition on BC with other cellulosic materi  ...[more]

Similar Datasets

| S-EPMC10133332 | biostudies-literature
| S-EPMC8272063 | biostudies-literature
| S-EPMC10025390 | biostudies-literature
| S-EPMC8433699 | biostudies-literature
| S-EPMC8000300 | biostudies-literature
| S-EPMC6838789 | biostudies-literature
| S-EPMC5018816 | biostudies-other
| S-EPMC3496636 | biostudies-literature
| S-EPMC5452496 | biostudies-other
2022-11-03 | GSE161017 | GEO