Unknown

Dataset Information

0

3D Printed Microheater Sensor-Integrated, Drug-Encapsulated Microneedle Patch System for Pain Management.


ABSTRACT: Microneedle patch devices have been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offer a facile approach to address such a challenge. Here a 3D-printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented. The ink solution comprised polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNTs) with a mass concentration of up to 45% (?10 times higher of existing ones) is prepared and used to print crack-free stretchable microheaters on substrates with a broad range of materials and geometric curves. The adhesion strength of the printed microheater on the microneedle patch in elevated temperatures is measured to evaluate their integration performance. Assessments of encapsulated drug release into rat's skin are confirmed by examining degradation of microneedles, skin morphologies, and released fluorescent signals. Results and demonstrations established here creates a new opportunity for developing sensor controlled smart microneedle patch systems by integrating with wearable electronics, potentially useful in clinical and biomedical research.

SUBMITTER: Yin M 

PROVIDER: S-EPMC6918473 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D Printed Microheater Sensor-Integrated, Drug-Encapsulated Microneedle Patch System for Pain Management.

Yin Mengtian M   Xiao Li L   Liu Qingchang Q   Kwon Sung-Yun SY   Zhang Yi Y   Sharma Poonam R PR   Jin Li L   Li Xudong X   Xu Baoxing B  

Advanced healthcare materials 20191030 23


Microneedle patch devices have been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offer a facile approach to address such a challenge. Here a 3D-printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented. The ink solution comprised polydimethylsilox  ...[more]

Similar Datasets

| S-EPMC8433167 | biostudies-literature
| S-EPMC6348003 | biostudies-literature
| S-EPMC6261659 | biostudies-literature
| S-EPMC5533785 | biostudies-literature
| S-EPMC9617462 | biostudies-literature
| S-EPMC9345335 | biostudies-literature
| S-EPMC7439566 | biostudies-literature
| S-EPMC8263571 | biostudies-literature
| S-EPMC6839936 | biostudies-literature
| S-EPMC7988348 | biostudies-literature