Unknown

Dataset Information

0

An ultrasensitive fiveplex activity assay for cellular kinases.


ABSTRACT: Protein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, I?B kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75?µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt-IKK-JNK-MEK-MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.

SUBMITTER: Smolko CM 

PROVIDER: S-EPMC6923413 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

An ultrasensitive fiveplex activity assay for cellular kinases.

Smolko Christian M CM   Janes Kevin A KA  

Scientific reports 20191219 1


Protein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substra  ...[more]

Similar Datasets

| S-EPMC2739094 | biostudies-literature
| S-EPMC3115440 | biostudies-literature
| S-EPMC3591670 | biostudies-literature
| S-EPMC3777791 | biostudies-literature
| S-EPMC5621765 | biostudies-literature
| S-EPMC6209106 | biostudies-literature
| S-EPMC7188320 | biostudies-literature
| S-EPMC4913309 | biostudies-literature
| S-EPMC43196 | biostudies-other
| S-EPMC5123575 | biostudies-literature