Persistent Exposure to Fusobacterium nucleatum Triggers Chemokine/Cytokine Release and Inhibits the Proliferation and Osteogenic Differentiation Capabilities of Human Gingiva-Derived Mesenchymal Stem Cells.
Ontology highlight
ABSTRACT: Fusobacterium nucleatum is one of the most frequent pathogenic bacteria causing periodontitis. The direct effect of Fusobacterium nucleatum (F. nucleatum) on oral stem cells has rarely been reported. In this study, we aimed to evaluate how gingiva-derived mesenchymal stem cells (GMSCs) respond to a direct challenge with F. nucleatum. GMSCs were isolated by the limiting dilution method and exposed to F. nucleatum at various multiplicities of infection (MOIs; F. nucleatum:cell ratios of 10:1, 50:1, and 100:1) for 24 h to 4 weeks. Our results indicated that F. nucleatum significantly inhibited cell proliferation in a dose-dependent manner and promoted cell migration and the release of chemokines/cytokines, such as CCL2, CXCL1, and IL-6. Additionally, F. nucleatum inhibited GMSC osteogenic differentiation partly by decreasing alkaline phosphatase (ALP) activity, mineralized nodule formation, and osteogenesis-related gene and protein expression. RNA-sequencing analyses indicated that F. nucleatum time-dependently activated cellular signaling pathways during the process of osteogenic differentiation. A total of 64 cell differentiation-related genes were found to be differentially expressed between non-infected and F. nucleatum-infected GMSCs at 3, 7, 14, and 21 d. Intriguingly, we discovered that the 64 cell differentiation-related differentially expressed genes (DEGs) were significantly enriched in cancer-related pathways, such as bone cancer, osteosarcoma and bone marrow cancer, which provides new insight into tumorigenesis during the process of GMSC osteogenic differentiation. In conclusion, this study demonstrates that persistent exposure to F. nucleatum promotes cell migration and chemokine/cytokine release and inhibits the proliferation and osteogenic differentiation of GMSCs. Our study provides a novel and long-time bacteria-cell co-culture in vitro model and makes a foundation for the future mechanistic studies of GMSCs under F. nucleatum infection.
SUBMITTER: Kang W
PROVIDER: S-EPMC6927917 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA