Unknown

Dataset Information

0

TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density Lipoprotein) Aggregates.


ABSTRACT:

Objective

Aggregation and modification of LDLs (low-density lipoproteins) promote their retention and accumulation in the arteries. This is a critical initiating factor during atherosclerosis. Macrophage catabolism of agLDL (aggregated LDL) occurs using a specialized extracellular, hydrolytic compartment, the lysosomal synapse. Compartment formation by local actin polymerization and delivery of lysosomal contents by exocytosis promotes acidification of the compartment and degradation of agLDL. Internalization of metabolites, such as cholesterol, promotes foam cell formation, a process that drives atherogenesis. Furthermore, there is accumulating evidence for the involvement of TLR4 (Toll-like receptor 4) and its adaptor protein MyD88 (myeloid differentiation primary response 88) in atherosclerosis. Here, we investigated the role of TLR4 in catabolism of agLDL using the lysosomal synapse and foam cell formation. Approach and Results: Using bone marrow-derived macrophages from knockout mice, we find that TLR4 and MyD88 regulate compartment formation, lysosome exocytosis, acidification of the compartment, and foam cell formation. Using siRNA (small interfering RNA), pharmacological inhibition and knockout bone marrow-derived macrophages, we implicate SYK (spleen tyrosine kinase), PI3K (phosphoinositide 3-kinase), and Akt in agLDL catabolism using the lysosomal synapse. Using bone marrow transplantation of LDL receptor knockout mice with TLR4 knockout bone marrow, we show that deficiency of TLR4 protects macrophages from lipid accumulation during atherosclerosis. Finally, we demonstrate that macrophages in vivo form an extracellular compartment and exocytose lysosome contents similar to that observed in vitro for degradation of agLDL.

Conclusions

We present a mechanism in which interaction of macrophages with agLDL initiates a TLR4 signaling pathway, resulting in formation of the lysosomal synapse, catabolism of agLDL, and lipid accumulation in vitro and in vivo.

SUBMITTER: Singh RK 

PROVIDER: S-EPMC6928397 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density Lipoprotein) Aggregates.

Singh Rajesh K RK   Haka Abigail S AS   Asmal Arky A   Barbosa-Lorenzi Valéria C VC   Grosheva Inna I   Chin Harvey F HF   Xiong Yuquan Y   Hla Timothy T   Maxfield Frederick R FR  

Arteriosclerosis, thrombosis, and vascular biology 20191010 1


<h4>Objective</h4>Aggregation and modification of LDLs (low-density lipoproteins) promote their retention and accumulation in the arteries. This is a critical initiating factor during atherosclerosis. Macrophage catabolism of agLDL (aggregated LDL) occurs using a specialized extracellular, hydrolytic compartment, the lysosomal synapse. Compartment formation by local actin polymerization and delivery of lysosomal contents by exocytosis promotes acidification of the compartment and degradation of  ...[more]

Similar Datasets

| S-EPMC6344252 | biostudies-literature
| S-EPMC1221728 | biostudies-other
| S-EPMC4583358 | biostudies-literature
| S-EPMC4501252 | biostudies-literature
| S-EPMC2784520 | biostudies-other
| S-EPMC1137980 | biostudies-other
| S-EPMC3173844 | biostudies-literature
2021-08-28 | GSE157054 | GEO
| S-EPMC6703909 | biostudies-literature
| S-EPMC7803659 | biostudies-literature