Unknown

Dataset Information

0

Valproic acid interactions with the NavMs voltage-gated sodium channel.


ABSTRACT: Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

SUBMITTER: Zanatta G 

PROVIDER: S-EPMC6936711 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

Similar Datasets

2022-06-09 | GSE186729 | GEO
| S-EPMC6175354 | biostudies-literature
2021-07-13 | GSE179818 | GEO
| S-EPMC7641581 | biostudies-literature
| S-EPMC8472079 | biostudies-literature
| S-EPMC3972499 | biostudies-literature
| S-EPMC6338345 | biostudies-literature
| S-EPMC3266868 | biostudies-literature
2020-05-09 | GSE150134 | GEO
2020-02-08 | GSE136927 | GEO