Project description:Primary ciliary dyskinesia (PCD) causes cellular cilia motility alterations, leading to clinical manifestations in the upper and lower respiratory tract and situs abnormalities. The PCD diagnosis was improved after the inclusion of diagnostic tools, such as transmission electron microscopy and genetic screening; however, the PCD screening is a challenge yet. In this context, we aimed to describe the clinical, genetic, and ultra-ciliary characteristics in individuals with clinical suspicion of PCD (cPCD) from a Brazilian Tertiary Hospital. An observational study was carried out with individuals during the follow-up between 2011 and 2021. The individuals were submitted to clinical questionnaires, transmission electron microscopy, and genetic screening for pathogenic variants in PCD-related genes. Those patients were classified according to the degree of suspicion for PCD. In our study, we enrolled thirty-seven cPCD individuals; 20/37 (54.1%) had chronic rhinosinusitis, 28/37 (75.6%) had bronchiectasis, and 29/37 (78.4%) had recurrent pneumonia. A total of 17/37 (45.9%) individuals had transmission electron microscopy or genetic confirmation of PCD; 10 individuals had at least one positive pathogenic genetic variant in the PCD-related genes; however, only seven patients presented a conclusive result according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology with two pathogenic variants in homozygous or compound heterozygous. The median age at diagnosis was 13 years, and the median time between suspicion and diagnosis was four years. Sixteen patients had class I electron microscopy alterations, seven had class II alterations, and 14 had normal transmission electron microscopy according to the international consensus guideline for reporting transmission electron microscopy results in the diagnosis of PCD (BEAT-PCD TEM Criteria). Genetic screening for pathogenic variants in PCD-related genes and transmission electron microscopy can help determine the PCD diagnosis; however, they are still unavailable to all individuals with clinical suspicion in Brazil. We described ultrastructural alterations found in our population along with the identification of pathogenic variants in PCD-related genes.
Project description:Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder of cilia structure, function, and biogenesis leading to chronic infections of the respiratory tract, fertility problems, and disorders of organ laterality. The diagnosis can be challenging, using traditional tools such as characteristic clinical features, ciliary function, and ultrastructural defects and newer screening tools such as nasal nitric oxide levels and genetic testing add to the diagnostic algorithm. There are 32 known PCD-causing genes, and in the future, comprehensive genetic testing may screen young infants before developing symptoms, thus improving survival. Therapies include surveillance of pulmonary function and microbiology, in addition to airway clearance, antibiotics, and early referral to bronchiectasis centers. As with cystic fibrosis (CF), standardized care at specialized centers using a multidisciplinary approach likely improves outcomes. In conjunction with the CF foundation, the PCD foundation, with experienced investigators and clinicians, is developing a network of PCD clinical centers to coordinate the effort in North America and Europe. As the network grows, clinical care and knowledge will improve.
Project description:BackgroundPrimary Ciliary Dyskinesia (PCD) diagnosis relies on a combination of tests which may include (a) nasal Nitric Oxide (nNO), (b) High Speed Video Microscopy (HSVM) and (c) Transmission Electron Microscopy (TEM). There is variability in the availability of these tests and lack of universal agreement whether diagnostic tests should be performed in sequence or in parallel. We assessed three combinations of tests for PCD diagnosis and estimated net sensitivity and specificity as well as cost-effectiveness (CE) and incremental cost-effectiveness (ICE) ratios.Methods and resultsA hypothetical initial population of 1000 referrals (expected 320 PCD patients) was followed through a probabilistic decision analysis model which was created to assess the CE of three diagnostic algorithms (a) nNO + TEM in sequence, (b) nNO + HSVM in sequence and (c) nNO/HSVM in parallel followed, in cases with conflicting results, by confirmatory TEM (nNO/HSVM+TEM). Number of PCD patients identified, CE and ICE ratios were calculated using Monte Carlo simulations. Out of 320 expected PCD patients, 313 were identified by nNO/HSVM+TEM, 274 with nNO + HSVM and 198 with nNO + TEM. The nNO/HSVM+TEM had the highest mean annual cost (€209 K) followed by nNO + TEM (€150 K) and nNO + HSVM (€136 K). The nNO + HSVM algorithm dominated the nNO + TEM algorithm (less costly and more effective). The ICE ratio for nNO/HSVM+TEM was €2.1 K per additional PCD patient identified.ConclusionsThe diagnostic algorithm (nNO/HSVM+TEM) with parallel testing outperforms algorithms with tests in sequence. These findings, can inform the dialogue on the development of evidence-based guidelines for PCD diagnostic testing. Future research in understudied aspects of the disease, such as PCD-related quality of life and PCD-associated costs, is needed to help the better implementation of these guidelines across various healthcare systems.
Project description:Primary Ciliary Dyskinesia (PCD, MIM 242650) is a rare, hereditary multiorgan disease characterized by malfunction of motile cilia. Hallmark symptom is a chronic airway infection due to mucostasis leading to irreversible lung damage that may progress to respiratory failure. There is no cure for this genetic disease and evidence-based treatment is limited. Until recently, there were no randomized controlled trials performed in PCD, but this year, data of the first placebo-controlled trial on pharmacotherapy in PCD were published. This cornerstone in the management of PCD was decisive for reviewing currently used treatment strategies. This article is a consensus of patient representatives and clinicians, which are highly experienced in care of PCD-patients and provides an overview of the management of PCD. Treatments are mainly based on expert opinions, personal experiences, or are deduced from other lung diseases, notably cystic fibrosis (CF), COPD or bronchiectasis. Most strategies focus on routine airway clearance and treatment of recurrent respiratory tract infections. Non-respiratory symptoms are treated organ specific. To generate further evidence-based knowledge, other projects are under way, e.?g. the International PCD-Registry. Participating in patient registries facilitates access to clinical and research studies and strengthens networks between centers. In addition, knowledge of genotype-specific course of the disease will offer the opportunity to further improve and individualize patient care.
Project description:Primary ciliary dyskinesia (PCD) is a disorder affecting motile cilia. An early accurate diagnosis helps prevent lung damage and preserve lung function. To make a diagnostic assessment, one of the commonly used methods that allows for the examination of ciliary ultrastructure is transmission electron microscopy (TEM). This allows for a quantitative assessment of ciliary components to identify defects associated with PCD. Heavy metal staining is required to provide a contrast when imaging cilia in the TEM. One of the most commonly used stains is uranyl acetate (UA). UA can be applied to cellular material before embedding (en bloc), or to ultrathin sections of embedded samples (grid staining). UA is radioactive and, due to growing safety concerns and restrictions by government bodies, universities and hospitals, it is essential to find a suitable alternative. We show UA-zero (UAZ), when used en bloc, provides a high contrast and is a suitable replacement for UA. PCD diagnostic experts, having reviewed ciliary cross-sections stained with UAZ en bloc, are confident that the staining and PCD defects are readily detectable similar to samples that have been stained with UA.
Project description:Ciliopathies are a growing class of disorders caused by abnormal ciliary axonemal structure and function. Our understanding of the complex genetic and functional phenotypes of these conditions has rapidly progressed. Primary ciliary dyskinesia (PCD) remains the sole genetic disorder of motile cilia dysfunction. However, unlike many Mendelian genetic disorders, PCD is not caused by mutations in a single gene or locus, but rather, autosomal recessive mutation in one of many genes that lead to a similar phenotype. The first reported PCD mutations, more than a decade ago, identified genes encoding known structural components of the ciliary axoneme. In recent years, mutations in genes encoding novel cytoplasmic and regulatory proteins have been discovered. These findings have provided new insights into the functions of the motile cilia, and a better understanding of motile cilia disease. Advances in genetic tools will soon allow more precise genetic testing, mandating that clinicians must understand the genetic basis of PCD. Here, we review genetic mutations, their biological impact on cilia structure and function, and the implication of emerging genetic diagnostic tools.
Project description:Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2-3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
Project description:Primary ciliary dyskinesia (PCD) is an autosomal recessive, rare, genetically heterogeneous condition characterized by oto-sino-pulmonary disease together with situs abnormalities (Kartagener syndrome) owing to abnormal ciliary structure and function. Most patients are currently diagnosed with PCD based on the presence of defective ciliary ultrastructure. However, diagnosis often remains challenging due to variability in the clinical phenotype and ciliary ultrastructural changes. Some patients with PCD have normal ciliary ultrastructure, which further confounds the diagnosis. A genetic test for PCD exists but is of limited value because it investigates only a limited number of mutations in only two genes. The genetics of PCD is complicated owing to the complexity of axonemal structure that is highly conserved through evolution, which is comprised of multiple proteins. Identifying a PCD-causing gene is challenging due to locus and allelic heterogeneity. Despite genetic heterogeneity, multiple tools have been used, and there are 11 known PCD-causing genes. All of these genes combined explain approximately 50% of PCD cases; hence, more genes need to be identified. This review briefly describes the current knowledge regarding the genetics of PCD and focuses on the methodologies used to identify novel PCD-causing genes, including a candidate gene approach using model organisms, next-generation massively parallel sequencing techniques, and the use of genetically isolated populations. In conclusion, we demonstrate the multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD.
Project description:Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder with defective structure and/or function of motile cilia/flagella, causing chronic upper and lower respiratory tract infections, fertility problems, and disorders of organ laterality. Diagnosing PCD requires a combined approach utilizing characteristic phenotypes and complementary methods for detection of defects of ciliary function and ultrastructure, measurement of nasal nitric oxide and genetic testing. Currently, biallelic mutations in 31 different genes have been linked to PCD allowing a genetic diagnosis in approximately ~ 60% of cases. Management includes surveillance of pulmonary function, imaging, and microbiology of upper and lower airways in addition to daily airway clearance and prompt antibiotic treatment of infections. Early referral to specialized centers that use a multidisciplinary approach is likely to improve outcomes. Currently, evidence-based knowledge on PCD care is missing let alone management guidelines. Research and clinical investigators, supported by European and North American patient support groups, have joined forces under the name of BESTCILIA, a European Commission funded consortium dedicated to improve PCD care and knowledge. Core programs of this network include the establishment of an international PCD registry, the generation of disease specific PCD quality of life questionnaires, and the first randomized controlled trial in PCD.
Project description:Primary ciliary dyskinesia (PCD) is a genetic disease of motile cilia, which belongs to a group of disorders resulting from dysfunction of cilia, collectively known as ciliopathies. Insights into the genetics and phenotypes of PCD have grown over the last decade, in part propagated by the discovery of a number of novel cilia-related genes. These genes encode proteins that segregate into structural axonemal, regulatory, as well as cytoplasmic assembly proteins. Our understanding of primary (sensory) cilia has also expanded, and an ever-growing list of diverse conditions has been linked to defective function and signaling of the sensory cilium. Recent multicenter clinical and genetic studies have uncovered the heterogeneity of motile and sensory ciliopathies, and in some cases, the overlap between these conditions. Here, we will describe the genetics and pathophysiology of ciliopathies in children, focusing on PCD, review emerging genotype-phenotype relationships, and diagnostic tools available for the clinician.