Right phenotype, wrong place: predator-induced plasticity is costly in a mismatched environment.
Ontology highlight
ABSTRACT: Like many animals, tadpoles often produce different, predator-specific phenotypes when exposed to risk of predation. It is generally assumed that such plasticity enhances survival in the presence of the predator and is costly elsewhere, but evidence remains surprisingly scarce. We measured (1) the survival trade-off of opposing phenotypes developed by Dendropsophus ebraccatus tadpoles when exposed to different predators and (2) which specific aspects of morphology drive any potential survival benefit or cost. Tadpoles developed predator-specific phenotypes after being reared with caged fish or dragonfly predators for two weeks. In 24 h predation trials with either a fish or a dragonfly, survival was highest in the groups with their matched predator, and lowest among with those the mismatched predator, with predator-naive controls being relatively intermediate. Then, using a large group of phenotypically variable predator-naive tadpoles, we found that increased survival rates are directly related to the morphological changes that are induced by each predator. This demonstrates that induced phenotypes are indeed adaptive and the product of natural selection. Furthermore, our data provide clear evidence of an environmental cost for phenotypic plasticity in a heterogeneous environment. Such costs are fundamental for understanding the evolution and maintenance of inducible phenotypes.
SUBMITTER: Innes-Gold AA
PROVIDER: S-EPMC6939276 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA