Unknown

Dataset Information

0

Phase synchronization varies systematically with linguistic structure composition.


ABSTRACT: Computation in neuronal assemblies is putatively reflected in the excitatory and inhibitory cycles of activation distributed throughout the brain. In speech and language processing, coordination of these cycles resulting in phase synchronization has been argued to reflect the integration of information on different timescales (e.g. segmenting acoustics signals to phonemic and syllabic representations; (Giraud and Poeppel 2012 Nat. Neurosci. 15, 511 (doi:10.1038/nn.3063)). A natural extension of this claim is that phase synchronization functions similarly to support the inference of more abstract higher-level linguistic structures (Martin 2016 Front. Psychol. 7, 120; Martin and Doumas 2017 PLoS Biol. 15, e2000663 (doi:10.1371/journal.pbio.2000663); Martin and Doumas. 2019 Curr. Opin. Behav. Sci. 29, 77-83 (doi:10.1016/j.cobeha.2019.04.008)). Hale et al. (Hale et al. 2018 Finding syntax in human encephalography with beam search. arXiv 1806.04127 (http://arxiv.org/abs/1806.04127)) showed that syntactically driven parsing decisions predict electroencephalography (EEG) responses in the time domain; here we ask whether phase synchronization in the form of either inter-trial phrase coherence or cross-frequency coupling (CFC) between high-frequency (i.e. gamma) bursts and lower-frequency carrier signals (i.e. delta, theta), changes as the linguistic structures of compositional meaning (viz., bracket completions, as denoted by the onset of words that complete phrases) accrue. We use a naturalistic story-listening EEG dataset from Hale et al. to assess the relationship between linguistic structure and phase alignment. We observe increased phase synchronization as a function of phrase counts in the delta, theta, and gamma bands, especially for function words. A more complex pattern emerged for CFC as phrase count changed, possibly related to the lack of a one-to-one mapping between 'size' of linguistic structure and frequency band-an assumption that is tacit in recent frameworks. These results emphasize the important role that phase synchronization, desynchronization, and thus, inhibition, play in the construction of compositional meaning by distributed neural networks in the brain. This article is part of the theme issue 'Towards mechanistic models of meaning composition'.

SUBMITTER: Brennan JR 

PROVIDER: S-EPMC6939345 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phase synchronization varies systematically with linguistic structure composition.

Brennan Jonathan R JR   Martin Andrea E AE  

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 20191216 1791


Computation in neuronal assemblies is putatively reflected in the excitatory and inhibitory cycles of activation distributed throughout the brain. In speech and language processing, coordination of these cycles resulting in phase synchronization has been argued to reflect the integration of information on different timescales (e.g. segmenting acoustics signals to phonemic and syllabic representations; (Giraud and Poeppel 2012 <i>Nat. Neurosci.</i><b>15</b>, 511 (doi:10.1038/nn.3063)). A natural  ...[more]

Similar Datasets

| S-EPMC6644631 | biostudies-literature
| S-EPMC10317177 | biostudies-literature
| S-EPMC5852027 | biostudies-literature
| S-EPMC4217337 | biostudies-literature
| S-EPMC6364943 | biostudies-literature
| S-EPMC4763290 | biostudies-literature
| S-EPMC10472921 | biostudies-literature
| S-EPMC6300153 | biostudies-literature
| S-EPMC1315276 | biostudies-literature
| S-EPMC7506002 | biostudies-literature