Connexin 43 Mutations Lead to Increased Hemichannel Functionality in Skin Disease.
Ontology highlight
ABSTRACT: Gap junctional channels are specialized components of the cellular membrane that allow the intercellular passage of small metabolites, ions, and second messengers to maintain homeostasis. They are comprised of members of the connexin gene family that encode a wide array of proteins that are expressed in nearly every tissue type. Cx43 is perceived to be the most broadly expressed connexin in humans, with several genetic skin diseases being linked to Cx43 mutations specifically. These mutations, in large, produce a gain of functional hemichannels that contribute to the phenotypes of Erythrokeratoderma Variabilis et Progressiva (EKVP), Palmoplantar Keratodemra Congenital Alopecia-1 (PPKCA1), and others that produce large conductance and increased permselectivity in otherwise quiescent structures. Gaining functional hemichannels can have adverse effects in the skin, inducing apoptosis via Ca2+ overload or increased ATP permeability. Here, we review the link between Cx43 and skin disease. We aim to provide insight into the mechanisms regulating the normal and pathophysiological gating of these essential proteins, as well as address current therapeutic strategies. We also demonstrate that transient transfection of neuro-2a (N2a) cells with mutant Cx43 cDNA resulted in increased hemichannel activity compared to wild-type Cx43 and untransfected cells, which is consistent with other studies in the current literature.
SUBMITTER: Cocozzelli AG
PROVIDER: S-EPMC6940829 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA