Unknown

Dataset Information

0

Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence.


ABSTRACT: During the last few decades, wet adhesives have been developed for applications in various fields. Nonetheless, key questions such as the most suitable polymer architecture as well as the most suitable chemical composition remain open. In this article, we investigate the underwater adhesion properties of novel responsive polymer brushes with side graft chain architecture prepared using "grafting through" approach on flat surfaces. The incorporation in the backbone of thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) allowed us to obtain LCST behavior in the final layers. PNIPAm is co-polymerized with poly(methyl ethylene phosphate) (PMEP), a poloyphosphoester. The final materials are characterized studying the surface-grafted polymer as well as the polymer from the bulk solution, and pure PNIPAm brush is used as reference. PNIPAm-g-PMEP copolymers retain the responsive behavior of PNIPAm: when T > LCST, a clear switching of properties is observed. More specifically, all layers above the critical temperature show collapse of the chains, increased hydrophobicity and variation of the surface charge even if no ionizable groups are present. Secondly, effect of adhesion parameters such as debonding rate and contact time is studied. Thirdly, the reversibility of the adhesive properties is confirmed by performing adhesion cycles. Finally, the adhesive properties of the layers are studied below and above the LCST against hydrophilic and hydrophobic substrates.

SUBMITTER: Sidoli U 

PROVIDER: S-EPMC6941113 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence.

Sidoli Ugo U   Tee Hisaschi T HT   Raguzin Ivan I   Mühldorfer Jakob J   Wurm Frederik R FR   Synytska Alla A  

International journal of molecular sciences 20191213 24


During the last few decades, wet adhesives have been developed for applications in various fields. Nonetheless, key questions such as the most suitable polymer architecture as well as the most suitable chemical composition remain open. In this article, we investigate the underwater adhesion properties of novel responsive polymer brushes with side graft chain architecture prepared using "<i>grafting through</i>" approach on flat surfaces. The incorporation in the backbone of thermo-responsive pol  ...[more]

Similar Datasets

| S-EPMC9180196 | biostudies-literature
| S-EPMC9055642 | biostudies-literature
| S-EPMC7022643 | biostudies-literature
| S-EPMC10146612 | biostudies-literature
| S-EPMC6403727 | biostudies-literature
| S-EPMC9920352 | biostudies-literature
| S-EPMC6438354 | biostudies-literature
| S-EPMC5504464 | biostudies-literature
| S-EPMC7762168 | biostudies-literature
| S-EPMC9315361 | biostudies-literature