Unknown

Dataset Information

0

Bayesian mixture regression analysis for regulation of Pluripotency in ES cells.


ABSTRACT: BACKGROUND:Observed levels of gene expression strongly depend on both activity of DNA binding transcription factors (TFs) and chromatin state through different histone modifications (HMs). In order to recover the functional relationship between local chromatin state, TF binding and observed levels of gene expression, regression methods have proven to be useful tools. They have been successfully applied to predict mRNA levels from genome-wide experimental data and they provide insight into context-dependent gene regulatory mechanisms. However, heterogeneity arising from gene-set specific regulatory interactions is often overlooked. RESULTS:We show that regression models that predict gene expression by using experimentally derived ChIP-seq profiles of TFs can be significantly improved by mixture modelling. In order to find biologically relevant gene clusters, we employ a Bayesian allocation procedure which allows us to integrate additional biological information such as three-dimensional nuclear organization of chromosomes and gene function. The data integration procedure involves transforming the additional data into gene similarity values. We propose a generic similarity measure that is especially suitable for situations where the additional data are of both continuous and discrete type, and compare its performance with similar measures in the context of mixture modelling. CONCLUSIONS:We applied the proposed method on a data from mouse embryonic stem cells (ESC). We find that including additional data results in mixture components that exhibit biologically meaningful gene clusters, and provides valuable insight into the heterogeneity of the regulatory interactions.

SUBMITTER: Aflakparast M 

PROVIDER: S-EPMC6941360 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian mixture regression analysis for regulation of Pluripotency in ES cells.

Aflakparast Mehran M   Geeven Geert G   de Gunst Mathisca C M MCM  

BMC bioinformatics 20200102 1


<h4>Background</h4>Observed levels of gene expression strongly depend on both activity of DNA binding transcription factors (TFs) and chromatin state through different histone modifications (HMs). In order to recover the functional relationship between local chromatin state, TF binding and observed levels of gene expression, regression methods have proven to be useful tools. They have been successfully applied to predict mRNA levels from genome-wide experimental data and they provide insight int  ...[more]

Similar Datasets

| S-EPMC8881390 | biostudies-literature
| S-EPMC10102889 | biostudies-literature
| S-EPMC3796736 | biostudies-literature
| S-EPMC5937171 | biostudies-literature
| S-EPMC1636644 | biostudies-literature
| S-EPMC2386458 | biostudies-literature
| S-EPMC4132717 | biostudies-literature
| S-EPMC8835633 | biostudies-literature
| S-EPMC3203670 | biostudies-literature
| S-EPMC3260568 | biostudies-literature