Unknown

Dataset Information

0

Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection.


ABSTRACT: A ZnO sol-gel precursor (ZnOPr) and graphene nanoplatelets (GnPs) are mixed into a composite ink for inkjet printing photodetectors with bulk heterojunctions of ZnO/GnP on a heated SiO2/Si substrate. Heating of the SiO2/Si wafers at ?50 °C was found optimal to prevent segregated droplets on the hydrophobic surface of the SiO2/Si substrate during printing. After printing the ZnO/GnP channels, thermal annealing at 350 °C for 2 h was performed for crystallization of ZnO and formation of the ZnO/GnP heterojunctions. The GnP concentration was varied from 0, 5, 20, and 30 mM to evaluate optimal formation of the ZnO/GnP bulk heterojunction nanocomposites based on ultraviolet photoresponse performance. The best performance was observed at the 20 mM GnP concentration with the photoresponsivity reaching 2.2 A/W at an incident ultraviolet power of 2.2 ?W and a 5 V bias. This photoresponsivity is an order of magnitude better than the previously reported counterparts, including 0.13 mA/W for dropcasted ZnO-graphite composites and much higher than 0.5 A/W for aerosol printed ZnO. The improved performance is attributed to the ZnO/GnP bulk heterojunctions with improved interfaces that enable efficient exciton dissociation and the charge transport. The developed inkjet printing of sol-gel composite inks approach can be scalable and low cost for practical applications.

SUBMITTER: Cook B 

PROVIDER: S-EPMC6941389 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection.

Cook Brent B   Gong Maogang M   Corbin Alex A   Ewing Dan D   Tramble Ashley A   Wu Judy J  

ACS omega 20191218 27


A ZnO sol-gel precursor (ZnOPr) and graphene nanoplatelets (GnPs) are mixed into a composite ink for inkjet printing photodetectors with bulk heterojunctions of ZnO/GnP on a heated SiO<sub>2</sub>/Si substrate. Heating of the SiO<sub>2</sub>/Si wafers at ∼50 °C was found optimal to prevent segregated droplets on the hydrophobic surface of the SiO<sub>2</sub>/Si substrate during printing. After printing the ZnO/GnP channels, thermal annealing at 350 °C for 2 h was performed for crystallization of  ...[more]

Similar Datasets

| S-EPMC5663939 | biostudies-literature
| S-EPMC9080686 | biostudies-literature
| S-EPMC8307527 | biostudies-literature
| S-EPMC8954166 | biostudies-literature
| S-EPMC7145287 | biostudies-literature
| S-EPMC6444987 | biostudies-literature
| S-EPMC8625229 | biostudies-literature
| S-EPMC10053694 | biostudies-literature
| S-EPMC8125221 | biostudies-literature
| S-EPMC10501200 | biostudies-literature