Project description:BackgroundCapsule endoscopy (CE) is safe and widely accepted for small bowel (SB) investigation and an alternative to colonoscopy in specific clinical circumstances. As the capsule is orally ingested, the potential risk of aspiration is undoubtedly a constant concern among clinicians. However, it is a rare occurrence and often reported as isolated cases. Therefore, this review systematically compiles all the available data on capsule aspiration in the literature with an aim to provide an update on this complication of CE.MethodsA systematic literature search was performed on PubMed with the search terms 'capsule endoscopy' AND 'aspiration', searched as keywords and MeSH. All observational cohort studies that reported aspiration among complications/outcomes, case reports and series on capsule aspiration were included. Manual citation search was performed. Two extractors reviewed abstract and full-text and performed data extraction.ResultsWe found 95 relevant articles, and cross-checking references led to the inclusion of an additional 19 articles. We removed 57 and ended with 57 references-with 63 cases of aspirated capsules. One death was reported. The median age was 78, and there was male preponderance. The most common indication for CE was anaemia, and only aspiration of small bowel CE (SBCE) was reported. 61.9% of the aspirations were symptomatic; the most common symptom was coughing. 69.8% of capsules ended in the bronchus, but only 4 cases experienced desaturation. Thirty-two patients needed intervention for retrieval; the aspiration was self-resolved in the remaining. Only four patients had a history of dysphagia. Thirteen instances of aspiration were detected due to real-time viewing, and 24 cases from reviewing the capsule data afterwards.ConclusionsWith only 63 cases of aspirated capsules reported in the literature, this event remains rare, is safely managed, and should not discourage patients from the procedure. The importance of careful patient selection is crucial to minimize the likelihood of aspiration and capsule administration should be approached with precautions.
Project description:BackgroundAlthough there are papers reporting on the accuracy of colon capsule endoscopy (CCE) compared with colonoscopy (CS), there are few reports on the detection rates of significant lesions by endoscopy nurses. We previously reported no significant difference in the detection rates for small bowel capsule endoscopy (SBCE) images among two well-trained physicians and one expert nurse.ObjectiveTo evaluate the reading time and detection rate of the significant lesions of CCE images among novice and trained expert endoscopy nurses and novice physicians.MethodsCCE videos of 20 consecutive patients who performed both CCE and CS with clinically significant localized lesions were selected. Two trained expert endoscopy nurses, untrained two novice physicians, and novice three endoscopy nurses reviewed CCE videos. The detection rate of the lesions and reading time were compared among the three groups and were evaluated by comparison between the first and the second 10 videos.ResultsThe median reading time was the shortest (19 min) in the trained expert endoscopy nurses and the longest (45 min) in the novice nurses. The number of thumbnails tended to be more in the trained expert endoscopy nurses in the first 10-video reading. Although the detection rates of small polyps (<5 mm) were significantly lower (46.5%, p=0.025) in the novice nurses compared to the others, they were improved (35.2% to 63.5%, p=0.015) in the second 10 videos. The detection rates of tumor lesions by either one of two trained expert endoscopy nurses were higher compared to those by each novice physician.ConclusionsThe trained expert endoscopy nurses for CCE reading can reduce physician's time and improve the diagnostic yield.
Project description:Capsule endoscopy (CE) enables evaluation of the entire mucosal surface of the small bowel (SB), which is one of the most important steps for evaluating obscure gastrointestinal bleeding. Although the diagnostic yield of SB CE depends on many clinical factors, there are no reports on quality indicators. Thus, the Korean Gut Image Study Group (KGISG) publishes an article titled, "Quality Indicators for Small Bowel Capsule Endoscopy" under approval from the Korean Society of Gastrointestinal Endoscopy (KSGE). Herein, we initially identified process quality indicators, while the structural and outcome indicators are reserved until sufficient clinical data are accumulated. We believe that outcomes of SB CE can be improved by trying to meet our proposed quality indicators.
Project description:Gastrointestinal (GI) tract diseases are responsible for substantial morbidity and mortality worldwide, including colorectal cancer, which has shown a rising incidence among adults younger than 50. Although this could be alleviated by regular screening, only a small percentage of those at risk are screened comprehensively, due to shortcomings in accuracy and patient acceptance. To address these challenges, we designed an artificial intelligence (AI)-empowered wireless video endoscopic capsule that surpasses the performance of the existing solutions by featuring, among others: (1) real-time image processing using onboard deep neural networks (DNN), (2) enhanced visualization of the mucous layer by deploying both white-light and narrow-band imaging, (3) on-the-go task modification and DNN update using over-the-air-programming and (4) bi-directional communication with patient's personal electronic devices to report important findings. We tested our solution in an in vivo setting, by administrating our endoscopic capsule to a pig under general anesthesia. All novel features, successfully implemented on a single platform, were validated. Our study lays the groundwork for clinically implementing a new generation of endoscopic capsules, which will significantly improve early diagnosis of upper and lower GI tract diseases.
Project description:Delayed gastric emptying is a significant factor in incomplete small bowel capsule examinations. Gastric transit could be hastened by external magnetic control of the capsule. We studied the feasibility of this approach to improve capsule endoscopy completion rates.Prospective, single-center, randomized controlled trial involving 122 patients attending for small bowel capsule endoscopy using MiroCam Navi. Patients were randomized to either the control group (mobilisation for 30 minutes after capsule ingestion, followed by intramuscular metoclopramide 10 mg if the capsule failed to enter the small bowel) or the intervention group (1000 mL of water prior to capsule ingestion, followed by positional change and magnetic steering). Outcome measures were capsule endoscopy completion rate, gastric clarity and distention, relationship of body habitus to capsule endoscopy completion rate (CECR), and patient comfort scores.122 patients were recruited (61 each to the control and intervention groups: mean age 49 years [range 21 - 85], 61 females). There was no significant difference in CECR between the two groups (P = 0.39). Time to first pyloric image was significantly shorter in the intervention group (P = 0.03) but there was no difference in gastric transit times (P = 0.12), suggesting that magnetic control hastens capsular transit to the gastric antrum but does not influence duodenal passage. Gastric clarity and distention were significantly better in the intervention group (P < 0.0001 and P < 0.0001 respectively).Magnetic steering of a small bowel capsule is unable to overcome pyloric contractions to enhance gastric emptying and improve capsule endoscope completion rate. Excellent mucosal visualisation within the gastric cavity suggests this technique could be harnessed for capsule examination of the stomach.
Project description:A search of the internet today to quantify the estimated value of capsules from a global perspective, easily delivers figures stating around $200 million in 2014 to about $400 million by 2020, which would be approximately 10% of the gastrointestinal endoscopic market. Is this a steep rise within just six years or could the capsule market do even better? What chances does this offer and what are the key aspects for future success? By 2020, more than 1 billion people are aged sixty or older and around one third of them will live in what the UN calls "more developed regions". Naturally, this brings an increased demand for colorectal cancer screening and surgery. But keeping in mind that basically every healthcare system, in any country, is already operating at its limits, how do we secure future treatment for a growing community? Surely more competition will steadily bring down prices for capsules. However, that does not ease the amount of time that is spent to properly read any video and issue a valid diagnosis for every patient. This article intends to give an overview about the current global market for capsule endoscopy (CE) with a perspective on typical patients, their indications, and how the capsules are used and by whom. Further aspects, such as standardization of training, reading and future trends will also be elaborated on.
Project description:Backgrounds and aimsComplete and consecutive observation of the gastrointestinal (GI) tract continues to present challenges for current endoscopy systems. We developed a novel upper and mid gastrointestinal (UMGI) capsule endoscopy using the modified detachable string magnetically controlled capsule endoscopy (DS-MCE) and inspection method and aimed to assess the clinical application.MethodsPatients were recruited to undergo UMGI capsule endoscopy followed by esophagogastroduodenoscopy. All capsule procedures in the upper gastrointestinal (UGI) tract were conducted under the control of magnet and string. The main outcome was technical success, and the secondary outcomes included visualization of the UMGI tract, examination time, diagnostic yield, compliance, and safety evaluation.ResultsThirty patients were enrolled and all UMGI capsule procedures realized repeated observation of the esophagus and duodenum with detection rates of 100.0%, 80.0%, and 86.7% of Z-line, duodenal papilla, and reverse side of pylorus, respectively. String detachment was succeeded in 29 patients (96.7%) and the complete examination rate of UMGI tract was 95.45% (21/22). All UMGI capsule procedures were well tolerated with low discomfort score, and had a good diagnostic yield with per-lesion sensitivity of 96.2% in UGI diseases. No adverse events occurred.ConclusionsThis new capsule endoscopy system provides an alternative screening modality for the UMGI tract, and might be indicated in cases of suspected upper and small bowel GI bleeding. Trial registration DS-MCE-UGI and SB, NCT04329468. Registered 27 March 2020, https://clinicaltrials.gov/ct2/results?cond=&term=NCT04329468 .
Project description:Small bowel capsule endoscopy is considered a first-line diagnostic tool for the investigation of small bowel diseases. Gastroenterological and endoscopic societies have proposed and established measures known as quality indicators, quality measures or performance measures for the majority of endoscopic procedures, in order to ensure competence, healthcare quality and define areas requiring improvement. However, there is a paucity of publications describing small bowel capsule endoscopy quality indicators. Hereby, we attempt to identify and describe a number of pre-procedure, intra-procedure and post-procedure quality indicators, regarding process measures in small bowel capsule endoscopy, after a comprehensive review of the literature.
Project description:The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule.
Project description:Capsule endoscopy (CE) has been increasingly utilised in recent years as a minimally invasive tool to investigate the whole gastrointestinal (GI) tract and a range of capsules are currently available for evaluation of upper GI, small bowel, and lower GI pathology. Although CE is undoubtedly an invaluable test for the investigation of small bowel pathology, it presents considerable challenges and limitations, such as long and laborious reading times, risk of missing lesions, lack of bowel cleansing score and lack of locomotion. Artificial intelligence (AI) seems to be a promising tool that may help improve the performance metrics of CE, and consequently translate to better patient care. In the last decade, significant progress has been made to apply AI in the field of endoscopy, including CE. Although it is certain that AI will find soon its place in day-to-day endoscopy clinical practice, there are still some open questions and barriers limiting its widespread application. In this review, we provide some general information about AI, and outline recent advances in AI and CE, issues around implementation of AI in medical practice and potential future applications of AI-aided CE.