Unknown

Dataset Information

0

HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA.


ABSTRACT: APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunode?ciency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.

SUBMITTER: Morse M 

PROVIDER: S-EPMC6946564 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA.

Morse Michael M   Naufer M Nabuan MN   Feng Yuqing Y   Chelico Linda L   Rouzina Ioulia I   Williams Mark C MC  

eLife 20191218


APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interacti  ...[more]

Similar Datasets

| S-EPMC3585047 | biostudies-literature
| S-EPMC3961392 | biostudies-literature
| S-EPMC2241890 | biostudies-literature
| S-EPMC2810999 | biostudies-literature
| S-EPMC2516750 | biostudies-literature
| S-EPMC3346118 | biostudies-literature
| S-EPMC3531493 | biostudies-literature
| S-EPMC2646141 | biostudies-literature
| S-EPMC5448093 | biostudies-literature
| S-EPMC3247945 | biostudies-literature