Quantitative Assessment of CMTM6 in the Tumor Microenvironment and Association with Response to PD-1 Pathway Blockade in Advanced-Stage Non-Small Cell Lung Cancer.
Ontology highlight
ABSTRACT: INTRODUCTION:CKLF like MARVEL transmembrane domain containing 6 (CMTM6) has been described as a programmed death ligand 1 (PD-L1) regulator at the protein level by modulating stability through ubiquitination. In this study, we describe the patterns of CMTM6 expression and assess its association with response to programmed cell death 1 pathway blockade in NSCLC. METHODS:We used multiplexed quantitative immunofluorescence to determine the expression of CMTM6 and PD-L1 in 438 NSCLCs represented in tissue microarrays, including in two independent retrospective cohorts of immunotherapy-treated (n = 69) and non-immunotherapy-treated (n = 258) patients and a third collection of EGFR- and KRAS-genotyped tumors (n = 111). RESULTS:Tumor and stromal CMTM6 expression was detected in approximately 70% of NSCLCs. CMTM6 expression was not associated with clinical features or EGFR/KRAS mutational status and showed a modest correlation with T-cell infiltration (R2 < 0.40). We found a significant correlation between CMTM6 and PD-L1, which was higher in the stroma (R2 = 0.51) than in tumor cells (R2 = 0.35). In our retrospective NSCLC cohort, neither CMTM6 nor PD-L1 expression alone significantly predicted immunotherapy outcomes. However, high CMTM6 and PD-L1 coexpression in the stromal and CD68 compartments (adjusted hazard ratio = 0.38, p = 0.03), but not in tumor cells (p = 0.15), was significantly associated with longer overall survival in treated patients but was not observed in the absence of immunotherapy. CONCLUSION:This study supports the mechanistic role for CMTM6 in stabilization of PD-L1 in patient tumors and suggests that high coexpression of CMTM6 and PD-L1, particularly in stromal immune cells (macrophages), might identify the greatest benefit from programmed cell death 1 axis blockade in NSCLC.
SUBMITTER: Zugazagoitia J
PROVIDER: S-EPMC6951804 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA