Unknown

Dataset Information

0

EIF4A3-Induced circ-BNIP3 Aggravated Hypoxia-Induced Injury of H9c2 Cells by Targeting miR-27a-3p/BNIP3.


ABSTRACT: Acute myocardial infarction (AMI) results from long-term diminished blood supply diminishment (ischemia) to the heart, and the main reason for ischemia is hypoxia. BCL2 interaction protein 3 (BNIP3) can be upregulated by hypoxia and participates in the mediation of hypoxia-activated apoptosis in cardiac myocyte death. The purpose of this study was to interrogate the mechanism of BNIP3 in hypoxia-activated cardiac myocyte injury. Cell viability and apoptosis were evaluated by Cell counting kit 8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), TdT-mediated dUTP Nick-End Labeling (TUNEL), and caspase-3 activity assays. Molecular interactions were assessed by RNA immunoprecipitation (RIP) and pull-down assays. Gene levels were assessed via quantitative real-time PCR and western blot. BNIP3 expression was upregulated by hypoxia in H9c2 cells. We found that circ-BNIP3 (hsa_circ_0005972), whose annotated gene was BNIP3, was induced by hypoxia and positively regulated BNIP3 expression. Knockdown of BNIP3 or circ-BNIP3 reversed the effect of hypoxia in attenuating H9c2 cell viability and inducing apoptosis. circ-BNIP3 sponged miRNA-27a-3p (miR-27a-3p) to upregulate BNIP3 expression. Moreover, eukaryotic translation initiation factor 4A3 (EIF4A3) bound with the upstream region of the circ-BNIP3 mRNA transcript and induced circ-BNIP3 expression in H9c2 cells. EIF4A3-induced circ-BNIP3 aggravated hypoxia-caused injury of H9c2 cells through targeting miR-27a-3p/BNIP3 pathway, indicating circ-BNIP3 as a new target for relieving hypoxia-induced injury of cardiac myocytes.

SUBMITTER: Li Y 

PROVIDER: S-EPMC6951839 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

EIF4A3-Induced circ-BNIP3 Aggravated Hypoxia-Induced Injury of H9c2 Cells by Targeting miR-27a-3p/BNIP3.

Li Yansong Y   Ren Shuhong S   Xia Jingwen J   Wei Yong Y   Xi Yinhua Y  

Molecular therapy. Nucleic acids 20191126


Acute myocardial infarction (AMI) results from long-term diminished blood supply diminishment (ischemia) to the heart, and the main reason for ischemia is hypoxia. BCL2 interaction protein 3 (BNIP3) can be upregulated by hypoxia and participates in the mediation of hypoxia-activated apoptosis in cardiac myocyte death. The purpose of this study was to interrogate the mechanism of BNIP3 in hypoxia-activated cardiac myocyte injury. Cell viability and apoptosis were evaluated by Cell counting kit 8  ...[more]

Similar Datasets

| S-EPMC8445954 | biostudies-literature
| S-EPMC7262654 | biostudies-literature
| S-EPMC7307863 | biostudies-literature
| S-EPMC4910913 | biostudies-literature
| S-EPMC10390409 | biostudies-literature
| S-EPMC6566783 | biostudies-literature
| S-EPMC7109003 | biostudies-literature
| S-EPMC8556261 | biostudies-literature
| S-EPMC6927697 | biostudies-literature