The canonical non-homologous end joining factor XLF promotes chromosomal deletion rearrangements in human cells.
Ontology highlight
ABSTRACT: Clastogen exposure can result in chromosomal rearrangements, including large deletions and inversions that are associated with cancer development. To examine such rearrangements in human cells, here we developed a reporter assay based on endogenous genes on chromosome 12. Using the RNA-guided nuclease Cas9, we induced two DNA double-strand breaks, one each in the GAPDH and CD4 genes, that caused a deletion rearrangement leading to CD4 expression from the GAPDH promoter. We observed that this GAPDH-CD4 deletion rearrangement activates CD4+ cells that can be readily detected by flow cytometry. Similarly, double-strand breaks in the LPCAT3 and CD4 genes induced an LPCAT3-CD4 inversion rearrangement resulting in CD4 expression. Studying the GAPDH-CD4 deletion rearrangement in multiple cell lines, we found that the canonical non-homologous end joining (C-NHEJ) factor XLF promotes these rearrangements. Junction analysis uncovered that the relative contribution of C-NHEJ appears lower in U2OS than in HEK293 and A549 cells. Furthermore, an ATM kinase inhibitor increased C-NHEJ-mediated rearrangements only in U2OS cells. We also found that an XLF residue that is critical for an interaction with the C-NHEJ factor X-ray repair cross-complementing 4 (XRCC4), and XRCC4 itself are each important for promoting both this deletion rearrangement and end joining without insertion/deletion mutations. In summary, a reporter assay based on endogenous genes on chromosome 12 reveals that XLF-dependent C-NHEJ promotes deletion rearrangements in human cells and that cell type-specific differences in the contribution of C-NHEJ and ATM kinase inhibition influence these rearrangements.
SUBMITTER: Bhargava R
PROVIDER: S-EPMC6952595 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA