Unknown

Dataset Information

0

A Novel Small Molecule Inhibits Intrahepatocellular Accumulation of Z-Variant Alpha 1-Antitrypsin In Vitro and In Vivo.


ABSTRACT: Alpha 1-antitrypsin deficiency (AATD) is the most common genetic cause of liver disease in children and is associated with early-onset chronic liver disease in adults. AATD associated liver injury is caused by hepatotoxic retention of polymerized mutant alpha 1-antitrypsin molecules within the endoplasmic reticulum. Currently, there is no curative therapy for AATD. In this study, we selected small molecules with the potential to bind mutant alpha 1-antitrypsin (Z-variant) to inhibit its accumulation in hepatocytes. We used molecular docking to select candidate compounds that were validated in cell and animal models of disease. A crystal structure of polymerized alpha 1-antitrypsin molecule was used as the basis for docking 139,735 compounds. Effects of the top scoring compounds were investigated in a cell model that stably expresses Z-variant alpha 1-antitrypsin and in PiZ mice expressing Z-variant human alpha 1-antitrypsin (Z-hAAT), encoded by SERPINA1*E342K. 4','5-(Methylenedioxy)-2-nitrocinnamic acid was predicted to bind cleaved alpha 1-antitrypsin at the polymerization interface, and observed to co-localize with Z-hAAT, increase Z-hAAT degradation, inhibit intracellular accumulation of Z-hAAT, and alleviate liver fibrosis.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC6953066 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Novel Small Molecule Inhibits Intrahepatocellular Accumulation of Z-Variant Alpha 1-Antitrypsin In Vitro and In Vivo.

Zhang Xiaojuan X   Pham Kien K   Li Danmeng D   Schutte Ryan J RJ   Gonzalo David Hernandez DH   Zhang Penghui P   Oshins Regina R   Tan Weihong W   Brantly Mark M   Liu Chen C   Ostrov David A DA  

Cells 20191206 12


Alpha 1-antitrypsin deficiency (AATD) is the most common genetic cause of liver disease in children and is associated with early-onset chronic liver disease in adults. AATD associated liver injury is caused by hepatotoxic retention of polymerized mutant alpha 1-antitrypsin molecules within the endoplasmic reticulum. Currently, there is no curative therapy for AATD. In this study, we selected small molecules with the potential to bind mutant alpha 1-antitrypsin (Z-variant) to inhibit its accumula  ...[more]

Similar Datasets

| S-EPMC6529975 | biostudies-literature
| S-EPMC3899067 | biostudies-literature
| S-EPMC3767846 | biostudies-other
| S-EPMC5198725 | biostudies-literature
| S-EPMC8436759 | biostudies-literature
| S-EPMC7933930 | biostudies-literature
| S-EPMC4174574 | biostudies-literature
| S-EPMC7016295 | biostudies-literature
| S-EPMC5050114 | biostudies-literature
| S-EPMC5429884 | biostudies-literature