Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma.
Ontology highlight
ABSTRACT: Multiple rodent and primate preclinical studies have advanced CAR T cells into the clinic. However, no single model accurately reflects the challenges of effective CAR T therapy in human cancer patients. To evaluate the effectiveness of next-generation CAR T cells that aim to overcome barriers to durable tumor elimination, we developed a system to evaluate CAR T cells in pet dogs with spontaneous cancer. Here we report on this system and the results of a pilot trial using CAR T cells to treat canine diffuse large B cell lymphoma (DLBCL). We designed and manufactured CD20-targeting, second-generation canine CAR T cells for functional evaluation in vitro and in vivo using lentivectors to parallel human CAR T cell manufacturing. A first-in-species trial of five dogs with DLBCL treated with CAR T was undertaken. Canine CAR T cells functioned in an antigen-specific manner and killed CD20+ targets. Circulating CAR T cells were detectable post-infusion, however, induction of canine anti-mouse antibodies (CAMA) was associated with CAR T cell loss. Specific selection pressure on CD20+ tumors was observed following CAR T cell therapy, culminating in antigen escape and emergence of CD20-disease. Patient survival times correlated with ex vivo product expansion. Altering product manufacturing improved transduction efficiency and skewed toward a memory-like phenotype of canine CAR T cells. Manufacturing of functional canine CAR T cells using a lentivector is feasible. Comparable challenges to effective CAR T cell therapy exist, indicating their relevance in informing future human clinical trial design.
Project description:Patients with non-Hodgkin lymphomas (NHLs) resistant to standard therapies have a dismal prognosis. The outcome is even poorer in patients relapsing after autologous stem cell transplantation. Most of these patients do not qualify for an allogeneic hematopoietic cell transplantation (HCT) due to refractory disease, lack of a suitable allogeneic donor, higher age, or cumulative toxicity of previous chemotherapy. Despite patients undergoing allogeneic HCT normally profit from a graft-versus-lymphoma effect, overall survival in patients with NHL after HCT remains short. Therefore, novel treatment modalities are urgently needed. Chimeric antigen receptor (CAR)-T cells, a new class of cellular immunotherapy involving ex vivo genetic modification of T cells to incorporate an engineered CAR have been used in clinical trials. In the majority of studies, B cell malignancies treated with CD19 targeting CAR-T cells have been analyzed. Recently, results from 2 CD19 directed CAR-T cell trials with an increased follow-up of patients led to Food and Drug Administration and European Medicines Agency approval of tisagenlecleucel and axicabtagene ciloleucel. Common adverse events (AEs) include cytokine release syndrome and neurological toxicity, which may require admission to an intensive care unit, B cell aplasia and hemophagocytic lymphohistiocytosis. These AEs are manageable when treated by an appropriately trained team following established algorithm. In this review, we summarize the results of 3 large phase II CD19 CAR-T cell trials and focus on AEs. We also provide a perspective of ongoing activity in this field with the intend to improve the potency of this emerging novel therapy.
Project description:Prognosis for patients with refractory/relapsed (R/R) diffuse large B-cell lymphoma (DLBCL) is poor. Immune-based therapeutic treatments such as CD19 Chimeric Antigen Receptor (CAR) T cell therapies have dramatically changed the treatment landscape for R/R DLBCL leading to durable remissions in ~ 50% of patients. However, there remains an unmet need for developing novel therapies to improve clinical outcomes of patients not responding or relapsing after CAR T cell therapies. Lack of suitable immunotherapeutic targets and disease heterogeneity represent the foremost challenges in this emerging field. In this review, we discuss the recently approved and emerging novel immunotherapies for patients with R/R DLBCL in the post-CAR T era and the cell surface targets currently used.
Project description:For approximately three decades, autologous hematopoietic cell transplantation (auto-HCT) has been the standard of care for patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) after frontline therapy. This approach is limited due to the intensity of chemotherapy and the proportion of patients who relapse after auto-HCT. Since the approval of anti-CD19 chimeric antigen receptor T-cell (CAR-T) therapy and novel agents, the treatment paradigm for DLBCL has changed remarkably. Anti-CD19 CAR-T therapy was first approved for relapsed DLBCL after two or more previous lines of therapy with long-lasting responses, with over 50% of patients still alive at 5-year follow-up. Here, we discuss recent randomized phase 3 clinical trials using axicabtagene ciloleucel, tisagenlecleucel, and lisocabtagene maraleucel in the second-line therapy setting compared with the standard of care in transplant-eligible patients who have DLBCL R/R within 12 months of completing chemo-immunotherapy, potentially changing the treatment algorithm for DLBCL.
Project description:BackgroundChimeric antigen receptor (CAR) T-cell therapy is a novel cell therapy for treating non-Hodgkin lymphoma. The development of CAR T-cell therapy has transformed oncology treatment by offering a potential cure. However, due to the high cost of these therapies, and the large number of eligible patients, decision makers are faced with difficult funding decisions. Our objective was to assess the cost-effectiveness of tisagenlecleucel for adults with relapsed/refractory diffuse large B-cell lymphoma in Canada using updated survival data from the recent JULIET trial.MethodsWe developed an individual-simulated discrete event simulation model to assess the costs and quality-adjusted life-years (QALY) of tisagenlecleucel compared with salvage chemotherapy. Survival estimates were obtained from a published clinical trial and retrospective analysis. If patients remained progression free for 5 y, they were assumed to be in long-term remission. Costing and utility data were obtained from reports and published sources. A Canadian health care payer perspective was used, and outcomes were modeled over a lifetime horizon. Costs and outcomes were discounted at 1.5% annually, with costs reported in 2021 Canadian dollars. A probabilistic analysis was used, and model parameters were varied in 1-way sensitivity analyses and scenario analyses.ResultsAfter we incorporated the latest clinical evidence, tisagenlecleucel led to an additional cost of $503,417 and additional effectiveness of 2.48 QALYs, with an incremental cost-effectiveness ratio of $202,991 compared with salvage chemotherapy. At a willingness-to-pay threshold of $100,000/QALY, tisagenlecleucel had a 0% likelihood of being cost-effective.ConclusionsAt the current drug price, tisagenlecleucel was not found to be a cost-effective option. These results heavily depend on assumptions regarding long-term survival and the price of CAR T. Real-world evidence is needed to reduce uncertainty.HighlightsFor patients with diffuse large B-cell lymphoma who failed 2 or more lines of systemic therapy, CAR T was not found to be a cost-effective treatment option at a willingness-to-pay threshold of $100,000.These results heavily depend on the expected long-term survival. The uncertainty in the model may be improved using real-world evidence reported in the future.
Project description:Chimeric antigen receptor T-cell (CAR-T) therapy represents the most important advances in cancer immunotherapy, especially in hematological malignancies such as B-cell lymphomas. CAR-T cell therapy has significant activity in poor risk B-cell lymphomas. CAR-T cell therapy is associated with potentially life-threatening toxicities such as cytokine release syndrome (CRS) and neurotoxicity (NT). While CRS pathophysiology and management are well established, the understanding and treatment of NT continues to develop. All current CAR-T products approved for DLBCL have been associated with NT with some differences in their severity. As cell therapies continue to advance and its access broadening, it will be imperative for clinicians to be aware of the signs and symptoms of NT, its stratification and basic management.
Project description:Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-?B signaling. Inhibition of NF-?B signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-?B activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-?B signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-?B activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-?B signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL.
Project description:Understanding tumor heterogeneity and immune infiltrates within the tumor-immune microenvironment (TIME) is essential for the innovation of immunotherapies. Here, combining single-cell transcriptomics and chromatin accessibility sequencing, we profile the intratumor heterogeneity of malignant cells and immune properties of the TIME in primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) patients. We demonstrate diverse malignant programs related to tumor-promoting pathways, cell cycle and B-cell immune response. By integrating data from independent systemic DLBCL and follicular lymphoma cohorts, we reveal a prosurvival program with aberrantly elevated RNA splicing activity that is uniquely associated with PCNS DLBCL. Moreover, a plasmablast-like program that recurs across PCNS/activated B-cell DLBCL predicts a worse prognosis. In addition, clonally expanded CD8 T cells in PCNS DLBCL undergo a transition from a pre-exhaustion-like state to exhaustion, and exhibit higher exhaustion signature scores than systemic DLBCL. Thus, our study sheds light on potential reasons for the poor prognosis of PCNS DLBCL patients, which will facilitate the development of targeted therapy.
Project description:BackgroundThe Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathways play important roles in the pathogenesis of diffuse large B cell lymphoma (DLBCL) in humans, and up-regulated STAT3 expression and activity are associated with worse clinical outcome in humans. No studies have evaluated the JAK-STAT signaling pathway in DLBCL of dogs.HypothesisSTAT3 pathway is deregulated in DLBCL in dogs. We aim to assess the expression, activation, and cellular localization of STAT3 and mitogen-activated protein kinase ERK1/2 in DLBCL of dogs.AnimalsForty-three client-owned dogs diagnosed with DLBCL by histopathology METHODS: Retrospective analysis of DLBCL in dogs, including patient characteristics and treatment, immunohistochemistry, and protein expressions by Western blot.ResultsA higher percentage of STAT3 and p-STAT3 immunolabelled cells were observed in DLBCL of dogs when compared to normal canine lymph nodes. In STAT3 immunolabelled cells, STAT3 has higher nuclear expression in lymphoma samples than in normal or reactive lymph nodes. In addition to up-regulated STAT3 expression and activation, mitogen-activated kinase ERK1/2 activation is up-regulated in DLBCL of dogs.Conclusion and clinical importanceCompared with the normal canine lymph node, DLBCL of dogs has up-regulated STAT3 pathway. Our results support future investigation of JAK inhibitors in the treatment of DLBCL in dogs.
Project description:Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of lymphomas which require multiagent therapy for remission induction and are associated with relapse in more than 40% of patients. Spontaneous remission of diffuse large B-cell lymphoma (DLBCL) is a rare occurrence.