Project description:Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.
Project description:The cultivated strawberry (Fragaria?×?ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Project description:Octoploid strawberry (Fragaria ×ananassa) is a valuable specialty crop, but profitable production and availability are threatened by many pathogens. Efforts to identify and introgress useful disease resistance genes (R-genes) in breeding programs are complicated by strawberry's complex octoploid genome. Recently-developed resources in strawberry, including a complete octoploid reference genome and high-resolution octoploid genotyping, enable new analyses in strawberry disease resistance genetics. This study characterizes the complete R-gene collection in the genomes of commercial octoploid strawberry and two diploid ancestral relatives, and introduces several new technological and data resources for strawberry disease resistance research. These include octoploid R-gene transcription profiling, dN/dS analysis, expression quantitative trait loci (eQTL) analysis and RenSeq analysis in cultivars. Octoploid fruit eQTL were identified for 76 putative R-genes. R-genes from the ancestral diploids Fragaria vesca and Fragaria iinumae were compared, revealing differential inheritance and retention of various octoploid R-gene subtypes. The mode and magnitude of natural selection of individual F. ×ananassa R-genes was also determined via dN/dS analysis. R-gene sequencing using enriched libraries (RenSeq) has been used recently for R-gene discovery in many crops, however this technique somewhat relies upon a priori knowledge of desired sequences. An octoploid strawberry capture-probe panel, derived from the results of this study, is validated in a RenSeq experiment and is presented for community use. These results give unprecedented insight into crop disease resistance genetics, and represent an advance toward exploiting variation for strawberry cultivar improvement.
Project description:The primary goal of genomic selection is to increase genetic gains for complex traits by predicting performance of individuals for which phenotypic data are not available. The objective of this study was to experimentally evaluate the potential of genomic selection in strawberry breeding and to define a strategy for its implementation. Four clonally replicated field trials, two in each of 2 years comprised of a total of 1628 individuals, were established in 2013-2014 and 2014-2015. Five complex yield and fruit quality traits with moderate to low heritability were assessed in each trial. High-density genotyping was performed with the Affymetrix Axiom IStraw90 single-nucleotide polymorphism array, and 17 479 polymorphic markers were chosen for analysis. Several methods were compared, including Genomic BLUP, Bayes B, Bayes C, Bayesian LASSO Regression, Bayesian Ridge Regression and Reproducing Kernel Hilbert Spaces. Cross-validation within training populations resulted in higher values than for true validations across trials. For true validations, Bayes B gave the highest predictive abilities on average and also the highest selection efficiencies, particularly for yield traits that were the lowest heritability traits. Selection efficiencies using Bayes B for parent selection ranged from 74% for average fruit weight to 34% for early marketable yield. A breeding strategy is proposed in which advanced selection trials are utilized as training populations and in which genomic selection can reduce the breeding cycle from 3 to 2 years for a subset of untested parents based on their predicted genomic breeding values.
Project description:The commercial strawberry, Fragaria × ananassa, is a recent allo-octoploid that is cultivated worldwide. However, other than Fragaria vesca, which is universally accepted one of its diploid ancestors, its other early diploid progenitors remain unclear. Here, we performed comparative analyses of the genomes of five diploid strawberries, F. iinumae, F. vesca, F. nilgerrensis, F. nubicola, and F. viridis, of which the latter three are newly sequenced. We found that the genomes of these species share highly conserved gene content and gene order. Using an alignment-based approach, we show that F. iinumae and F. vesca are the diploid progenitors to the octoploid F. × ananassa, whereas the other three diploids that we analyzed in this study are not parental species. We generated a fully resolved, dated phylogeny of Fragaria, and determined that the genus arose ∼6.37 Ma. Our results effectively resolve conflicting hypotheses regarding the putative diploid progenitors of the cultivated strawberry, establish a reliable backbone phylogeny for the genus, and provide genetic resources for molecular breeding.
Project description:The plant VQ motif-containing proteins are a recently discovered class of plant regulatory proteins interacting with WRKY transcription factors capable of modulate their activity as transcriptional regulators. The short VQ motif (FxxhVQxhTG) is the main element in the WRKY-VQ interaction, whereas a newly identified variable upstream amino acid motif appears to be determinant for the WRKY specificity. The VQ family has been studied in several species and seems to play important roles in a variety of biological processes, including response to biotic and abiotic stresses. Here, we present a systematic study of the VQ family in both diploid (Fragaria vesca) and octoploid (Fragaria x ananassa) strawberry species. Thus, twenty-five VQ-encoding genes were identified and twenty-three were further confirmed by gene expression analysis in different tissues and fruit ripening stages. Their expression profiles were also studied in F. ananassa fruits affected by anthracnose, caused by the ascomycete fungus Colletotrichum, a major pathogen of strawberry, and in response to the phytohormones salicylic acid and methyl-jasmonate, which are well established as central stress signals to regulate defence responses to pathogens. This comprehensive analysis sheds light for a better understanding of putative implications of members of the VQ family in the defence mechanisms against this major pathogen in strawberry.
Project description:PremisePolyploid species often have complex evolutionary histories that have, until recently, been intractable due to limitations of genomic resources. While recent work has further uncovered the evolutionary history of the octoploid strawberry (Fragaria L.), there are still open questions. Much is unknown about the evolutionary relationship of the wild octoploid species, Fragaria virginiana and Fragaria chiloensis, and gene flow within and among species after the formation of the octoploid genome.MethodsWe leveraged a collection of wild octoploid ecotypes of strawberry representing the recognized subspecies and ranging from Alaska to southern Chile, and a high-density SNP array to investigate wild octoploid strawberry evolution. Evolutionary relationships were interrogated with phylogenetic analysis and genetic clustering algorithms. Additionally, admixture among and within species is assessed with model-based and tree-based approaches.ResultsPhylogenetic analysis revealed that the two octoploid strawberry species are monophyletic sister lineages. The genetic clustering results show substructure between North and South American F. chiloensis populations. Additionally, model-based and tree-based methods support gene flow within and among the two octoploid species, including newly identified admixture in the Hawaiian F. chiloensis subsp. sandwicensis population.ConclusionsF. virginiana and F. chiloensis are supported as monophyletic and sister lineages. All but one of the subspecies show extensive paraphyly. Furthermore, phylogenetic relationships among F. chiloensis populations supports a single population range expansion southward from North America. The inter- and intraspecific relationships of octoploid strawberry are complex and suggest substantial gene flow between sympatric populations among and within species.
Project description:Genotyping-by-sequencing (GBS) was used to survey genome-wide single-nucleotide polymorphisms (SNPs) in three biparental strawberry (Fragaria × ananassa) populations with the goal of evaluating this technique in a species with a complex octoploid genome. GBS sequence data were aligned to the F. vesca 'Fvb' reference genome in order to call SNPs. Numbers of polymorphic SNPs per population ranged from 1,163 to 3,190. Linkage maps consisting of 30-65 linkage groups were produced from the SNP sets derived from each parent. The linkage groups covered 99% of the Fvb reference genome, with three to seven linkage groups from a given parent aligned to any particular chromosome. A phylogenetic analysis performed using the POLiMAPS pipeline revealed linkage groups that were most similar to ancestral species F. vesca for each chromosome. Linkage groups that were most similar to a second ancestral species, F. iinumae, were only resolved for Fvb 4. The quantity of missing data and heterogeneity in genome coverage inherent in GBS complicated the analysis, but POLiMAPS resolved F. × ananassa chromosomal regions derived from diploid ancestor F. vesca.
Project description:BackgroundGene editing using CRISPR/Cas9 is a simple and powerful tool for elucidating genetic controls and for crop improvement and its use has been reported in a growing number of important food crops, including recently Fragaria. In order to inform application of the technology in Fragaria, we targeted the visible endogenous marker gene PDS (phytoene desaturase) in diploid Fragaria vesca ssp. vesca 'Hawaii 4' and octoploid F. × ananassa 'Calypso'.ResultsAgrobacterium-mediated transformation of leaf and petiole explants was used for efficient stable integration of constructs expressing plant codon-optimised Cas9 and single guide sequences under control of the Arabidopsis U6-26 consensus promoter and terminator or Fragaria vesca U6III regulatory sequences. More than 80% ('Hawaii 4') and 50% ('Calypso') putative transgenic shoot lines (multiple shoots derived from a single callus) exhibited mutant phenotypes. Of mutant shoot lines selected for molecular analysis, approximately 75% ('Hawaii 4') and 55% ('Calypso') included albino regenerants with bi-allelic target sequence variants. Our results indicate the PDS gene is functionally diploid in 'Calypso'.ConclusionWe demonstrate that CRISPR/Cas9 may be used to generate biallelic mutants at high frequency within the genomes of diploid and octoploid strawberry. The methodology, observations and comprehensive data set presented will facilitate routine application of this technology in Fragaria to single and multiple gene copy targets where mutant phenotypes cannot be identified visually.
Project description:Automatizing phenotype measurement will decisively contribute to increase plant breeding efficiency. Among phenotypes, morphological traits are relevant in many fruit breeding programs, as appearance influences consumer preference. Often, these traits are manually or semiautomatically obtained. Yet, fruit morphology evaluation can be enhanced using fully automatized procedures and digital images provide a cost-effective opportunity for this purpose. Here, we present an automatized pipeline for comprehensive phenomic and genetic analysis of morphology traits extracted from internal and external strawberry (Fragaria x ananassa) images. The pipeline segments, classifies, and labels the images and extracts conformation features, including linear (area, perimeter, height, width, circularity, shape descriptor, ratio between height and width) and multivariate (Fourier elliptical components and Generalized Procrustes) statistics. Internal color patterns are obtained using an autoencoder to smooth out the image. In addition, we develop a variational autoencoder to automatically detect the most likely number of underlying shapes. Bayesian modeling is employed to estimate both additive and dominance effects for all traits. As expected, conformational traits are clearly heritable. Interestingly, dominance variance is higher than the additive component for most of the traits. Overall, we show that fruit shape and color can be quickly and automatically evaluated and are moderately heritable. Although we study strawberry images, the algorithm can be applied to other fruits, as shown in the GitHub repository.