Unknown

Dataset Information

0

I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation.


ABSTRACT: The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ~300 ?m, ~380 ?m, and ~460 ?m were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments (DoE) and the response surface analysis (JMP® software) to relate three responses (scaffold thickness, porosity, and modulus) to the four experimental factors affecting the scaffold macro/microstructures (e.g., PEG strand diameter, PLGA concentration, nHA content, and TIPS temperature). Our results indicated that a PEG strand diameter of ~380 ?m, a PLGA concentration of ~10% w/v, a nHA content of ~10% w/w, and a TIPS temperature around -10°C could generate scaffolds with a porosity of ~90% and a modulus exceeding 4 MPa. This paper presents the steps for the I-optimal design of these scaffolds and reports on their macro/microstructures, characterized using scanning electron microscopy (SEM) and micro-computed tomography (micro-CT).

SUBMITTER: Yousefi AM 

PROVIDER: S-EPMC6961819 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation.

Yousefi Azizeh-Mitra AM   Liu Junyi J   Sheppard Riley R   Koo Songmi S   Silverstein Joshua J   Zhang Jing J   James Paul F PF  

ACS applied bio materials 20181231 2


The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of  ...[more]

Similar Datasets

| S-EPMC7880529 | biostudies-literature
| S-EPMC9571634 | biostudies-literature
| S-EPMC5807385 | biostudies-literature
| S-EPMC8063598 | biostudies-literature
| S-EPMC5553103 | biostudies-other
| S-EPMC4979982 | biostudies-literature
| S-EPMC6933169 | biostudies-literature
| S-EPMC9477890 | biostudies-literature
| S-EPMC5726274 | biostudies-literature
| S-EPMC6050325 | biostudies-literature