Unknown

Dataset Information

0

Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation.


ABSTRACT: One of the hallmark behaviors of social groups is division of labor, where different group members become specialized to carry out complementary tasks. By dividing labor, cooperative groups increase efficiency, thereby raising group fitness even if these behaviors reduce individual fitness. We find that antibiotic production in colonies of Streptomyces coelicolor is coordinated by a division of labor. We show that S. coelicolor colonies are genetically heterogeneous because of amplifications and deletions to the chromosome. Cells with chromosomal changes produce diversified secondary metabolites and secrete more antibiotics; however, these changes reduced individual fitness, providing evidence for a trade-off between antibiotic production and fitness. Last, we show that colonies containing mixtures of mutants and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. By generating specialized mutants that hyper-produce antibiotics, streptomycetes reduce the fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.

SUBMITTER: Zhang Z 

PROVIDER: S-EPMC6962034 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Antibiotic production in <i>Streptomyces</i> is organized by a division of labor through terminal genomic differentiation.

Zhang Zheren Z   Du Chao C   de Barsy Frédérique F   Liem Michael M   Liakopoulos Apostolos A   van Wezel Gilles P GP   Choi Young H YH   Claessen Dennis D   Rozen Daniel E DE  

Science advances 20200115 3


One of the hallmark behaviors of social groups is division of labor, where different group members become specialized to carry out complementary tasks. By dividing labor, cooperative groups increase efficiency, thereby raising group fitness even if these behaviors reduce individual fitness. We find that antibiotic production in colonies of <i>Streptomyces coelicolor</i> is coordinated by a division of labor. We show that <i>S. coelicolor</i> colonies are genetically heterogeneous because of ampl  ...[more]

Similar Datasets

| S-EPMC8289079 | biostudies-literature
| S-EPMC3353103 | biostudies-literature
| S-EPMC6331042 | biostudies-literature
| S-EPMC3310710 | biostudies-literature
| S-EPMC8360590 | biostudies-literature
| S-EPMC3182739 | biostudies-literature
2024-09-09 | PXD050869 | Pride
| S-EPMC1698255 | biostudies-literature
| S-EPMC2374992 | biostudies-literature