Unknown

Dataset Information

0

FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus.


ABSTRACT: FlhA and FlhB are transmembrane proteins of the flagellar type III protein export apparatus, and their C-terminal cytoplasmic domains (FlhAC and FlhBC) coordinate flagellar protein export with assembly. FlhBC undergoes autocleavage between Asn-269 and Pro-270 in a well-conserved NPTH loop located between FlhBCN and FlhBCC polypeptides and interacts with the C-terminal domain of the FliK ruler when the length of the hook has reached about 55?nm in Salmonella As a result, the flagellar protein export apparatus switches its substrate specificity, thereby terminating hook assembly and initiating filament assembly. The mechanism of export switching remains unclear. Here, we report the role of FlhBC cleavage in the switching mechanism. Photo-cross-linking experiments revealed that the flhB(N269A) and flhB(P270A) mutations did not affect the binding affinity of FlhBC for FliK. Genetic analysis of the flhB(P270A) mutant revealed that the P270A mutation affects a FliK-dependent conformational change of FlhBC, thereby inhibiting the substrate specificity switching. The flhA(A489E) mutation in FlhAC suppressed the flhB(P270A) mutation, suggesting that an interaction between FlhBC and FlhAC is critical for the export switching. We propose that the interaction between FliKC and a cleaved form of FlhBC promotes a conformational change in FlhBC responsible for the termination of hook-type protein export and a structural remodeling of the FlhAC ring responsible for the initiation of filament-type protein export.IMPORTANCE The flagellar type III protein export apparatus coordinates protein export with assembly, which allows the flagellum to be efficiently built at the cell surface. Hook completion is an important morphological checkpoint for the sequential flagellar assembly process. The protein export apparatus switches its substrate specificity from the hook protein to the filament protein upon hook completion. FliK, FlhB, and FlhA are involved in the export-switching process, but the mechanism remains a mystery. By analyzing a slow-cleaving flhB(P270A) mutant, we provide evidence that an interaction between FliK and FlhB induces conformational rearrangements in FlhB, followed by a structural remodeling of the FlhA ring structure that terminates hook assembly and initiates filament formation.

SUBMITTER: Minamino T 

PROVIDER: S-EPMC6964733 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus.

Minamino Tohru T   Inoue Yumi Y   Kinoshita Miki M   Namba Keiichi K  

Journal of bacteriology 20200115 3


FlhA and FlhB are transmembrane proteins of the flagellar type III protein export apparatus, and their C-terminal cytoplasmic domains (FlhA<sub>C</sub> and FlhB<sub>C</sub>) coordinate flagellar protein export with assembly. FlhB<sub>C</sub> undergoes autocleavage between Asn-269 and Pro-270 in a well-conserved NPTH loop located between FlhB<sub>CN</sub> and FlhB<sub>CC</sub> polypeptides and interacts with the C-terminal domain of the FliK ruler when the length of the hook has reached about 55   ...[more]

Similar Datasets

| S-EPMC6972891 | biostudies-literature
| S-EPMC8166844 | biostudies-literature
| S-EPMC3430611 | biostudies-literature
| S-EPMC3554004 | biostudies-literature
| S-EPMC4526367 | biostudies-literature
| S-EPMC2898369 | biostudies-literature
| S-EPMC7955116 | biostudies-literature
| S-EPMC4526659 | biostudies-literature
| S-EPMC3139655 | biostudies-literature
| S-EPMC2655537 | biostudies-literature